International Journal of Scientific Research and Engineering Development-– Volume 4 Issue 3, May- June 2021 Available at <u>www.ijsred.com</u>

RESEARCH ARTICLE

OPEN ACCESS

(1,2)*-Ÿ-CLOSED SETS IN BITOPOLOGICAL SPACES

P. REVATHI¹, C. SHANMUGA VADIVU², K.KAVITHA³, K.BANUMATHI⁴ AND A.PANDI⁵

¹Guest Lecturer, Department of Mathematics, Sri Meenakshi Govt Arts College for Women(Autonomous), Madurai, Tamilnadu, India.

E-mail:revsanjeeve@gmail.com

²Assistant Professor and Head, Department of Mathematics, Sethupathy Govt Arts College,Ramanathapuram,Tamilnadu, India. E-mail:**nasha11080@gmail.com**

³Assistant Professor and Head, Department of Mathematics, Senthamarai College of Arts and Science, Madurai, Tamilnadu, India. E-mail: <u>mahinas2010@gmail.com</u>

⁴PrincipalDepartment of Mathematics, St.Aloysius College of Education,Royappanpatti, Theni,Tamilnadu, India. E-mail: <u>banumathikannan@gmail.com</u>

> ⁵Department of Mathematics,Rathinam Technical Campus,Coimbatore-21,Tamil Nadu, India. E-mail: <u>pandi2085@yahoo.com</u>.

Abstract:

In this paper, we introduce a new class of sets namely $(1,2)^*$ - \ddot{Y} -closed sets in bitopological spaces. This class lies between the class of $\tau_{1,2}$ -closed sets and the class of $(1,2)^*$ -g-closed sets.

Key words and Phrases: (1,2)*-Ÿ-closed set, (1,2)*-Ÿ-open set.

I. INTRODUCTION

Levine [7] also introduced the notion of g-closed sets and investigated its fundamental properties. This notion was shown to be productive and very useful. Kelly [6] introduced the concepts of bitopological spaces.Recently, Bhattacharya and Lahiri [4], Arya and Nour [3], Sheik John [17] and Rajamani and Viswanathan [9] introduced sgclosed sets, gs-closed sets, ω -closed sets and αgs closed sets respectively.

In this paper, we introduce a new class of sets namely $(1,2)^*$ - \ddot{Y} -closed sets inbitopological

International Journal of Scientific Research and Engineering Development--- Volume 4 Issue 3, May- June 2021 Available at <u>www.ijsred.com</u>

spaces. This class lies between the class of $\tau_{1,2}$ closed sets and the class of $(1,2)^*$ -g-closed sets.

II.PRELIMINARIES

Throughout this paper, (X, τ_1, τ_2) (briefly, X) will denote bitopological space (briefly, BTPS).

Definition 2.1Let H be a subset of X. Then H is said to be $\tau_{1,2}$ -open [12] if $H = P \cup Q$ where $P \in \tau_1$ and $Q \in \tau_2$.

The complement of $\tau_{1,2}\text{-}open$ set is called $\tau_{1,2}\text{-}closed.$

Notice that $\tau_{1,2}$ -open sets need not necessarily form a topology.

Definition 2.2 [12]Let H be a subset of a bitopological space X. Then

- (i) the $\tau_{1,2}$ -closure of H, denoted by $\tau_{1,2}$ -cl(H), is defined as $\cap \{F : H \subseteq F \text{ and } F \text{ is } \tau_{1,2}\text{-} \text{closed}\}.$
- (ii) the $\tau_{1,2}$ -interior of H, denoted by $\tau_{1,2}$ -int(H), is defined as $\cup \{F : F \subseteq H \text{ and } F \text{ is } \tau_{1,2}$ open $\}$.

Definition 2.3A subset H of a BTPS X is called:

(i) (1,2)*-semi-open set [11] if $H\subseteq \tau_{1,2}$ -cl($\tau_{1,2}$ -int(H));

(ii) $(1,2)^*$ -preopen set [11] if H $\subseteq \tau_{1,2}$ -int($\tau_{1,2}$ -cl(H)); (iii) $(1,2)^*$ - α -open set [8] if H $\subseteq \tau_{1,2}$ -int($\tau_{1,2}$ -cl($\tau_{1,2}$ -int(H)));

(iv) $(1,2)^*$ - β -open set [13] (= (1,2)^*-semi-preopen [13]) if H $\subseteq \tau_{1,2}$ -cl($\tau_{1,2}$ -int($\tau_{1,2}$ -cl(H)));

(v) regular (1,2)*-open set [11] if $H = \tau_{1,2}$ -int($\tau_{1,2}$ - cl(H)).

The complements of the abovementioned open sets are called their respective closed sets.

The $(1,2)^*$ -preclosure [15] (resp. $(1,2)^*$ -semiclosure [11], $(1,2)^*$ - α -closure [8], $(1,2)^*$ -semi-preclosure [11]) of a subset H of X, denoted by $(1,2)^*$ pcl(H) (resp. $(1,2)^*$ -scl(H), $(1,2)^*$ - α cl(H), $(1,2)^*$ -

spcl(H)) is defined to be the intersection of all (1,2)*-preclosed (resp. (1,2)*-semi-closed, (1,2)*- $(1,2)^*$ -semi-preclosed) sets of X α -closed, containing H. It is known that $(1,2)^*$ -pcl(H) (resp. $(1,2)^*-scl(H), (1,2)^*-\alpha cl(H), (1,2)^*-spcl(H))$ is a (1,2)*-preclosed (resp. (1,2)*-semi-closed, (1,2)*- α -closed, (1,2)*-semi-preclosed) set. For any subset H of an arbitrarily chosen bitopological space, the $(1,2)^*$ -semi-interior [11] (resp. $(1,2)^*$ - α interior [8], (1,2)*-preinterior[15]) of H, denoted by $(1,2)^*-sint(H)$ (resp. $(1,2)^*-\alpha int(H)$, $(1,2)^*$ pint(H)), is defined to be the union of all $(1,2)^*$ semi-open (resp. $(1,2)^*$ - α -open, $(1,2)^*$ -preopen) sets of X contained in H.

Definition 2.4A subset H of a BTPS X is called

- (i) $(1,2)^*$ -generalized closed (briefly, $(1,2)^*$ -gcld) set [16] if $\tau_{1,2}$ -cl(H) \subseteq U whenever H \subseteq U and U is $\tau_{1,2}$ -open in X.
- (ii) $(1,2)^*$ -semi-generalized closed (briefly,(1,2)*-sg-cld) set [11] if $(1,2)^*$ scl(H) \subseteq U whenever H \subseteq U and U is $(1,2)^*$ -semi-open in X.
- (iii) (1,2)*-generalized semi-closed (briefly,(1,2)*-gs-cld) set [11] if (1,2)*scl(H) \subseteq U whenever H \subseteq U and U is $\tau_{1,2}$ open in X.
- (iv) $(1,2)^*-\alpha$ -generalized closed (briefly, $(1,2)^*-\alpha$ g-cld) set [15] if $(1,2)^*-\alpha$ cl(H) \subseteq U whenever H \subseteq U and U is $\tau_{1,2}$ -open in X.
- (v) $(1,2)^*$ -generalized semipreclosed(briefly,(1,2)^*-gsp-cld) set [15] if $(1,2)^*$ -spcl(H) \subseteq U whenever H \subseteq U and U is $\tau_{1,2}$ -open in X.
- (vi) $(1,2)^*$ - \hat{g} -closed set $((1,2)^*-\omega$ -cld)) [5] if $\tau_{1,2}$ -cl(H) \subseteq U whenever H \subseteq U and U is $(1,2)^*$ -semi-open in X.
- (vii) $(1,2)^* \alpha gs$ -closed (briefly, $(1,2)^* \alpha gs$ cld) set [15] if $(1,2)^* - \alpha cl(H) \subseteq U$ whenever $H \subseteq U$ and U is $(1,2)^*$ -semi-open in X.
- (viii) $(1,2)^*$ -g*s-closed (briefly, $(1,2)^*$ -g*s-cld) set [11] if $(1,2)^*$ -scl(H) \subseteq U whenever H \subseteq U and U is $(1,2)^*$ -gs-open in X.

International Journal of Scientific Research and Engineering Development-– Volume 4 Issue 3, May- June 2021 Available at <u>www.ijsred.com</u>

The complements of the abovementioned closed sets are called their respective open sets.

Remark 2.5The collection of all $(1,2)^*$ -g-cld (resp. $(1,2)^*-\omega$ -cld, $(1,2)^*$ -gs-cld, $(1,2)^*$ -gsp-cld, $(1,2)^*$ - α g-cld, $(1,2)^*$ - α gs-cld, $(1,2)^*$ -sg-cld, $(1,2)^*$ -grescld, $(1,2)^*$ -grescld, $(1,2)^*$ -grescld, $(1,2)^*$ -grescld, $(1,2)^*$ -grescld, $(1,2)^*$ -GC(X) (resp. $(1,2)^*-\omega$ C(X), $(1,2)^*$ -GSC(X), $(1,2)^*$ -GSPC(X), $(1,2)^*-\alpha$ GSC(X), $(1,2)^*$ -GGC(X), $(1,2)^*$ -GGSC(X), $(1,2)^*$ -GGC(X), $(1,2)^*$ -GGSC(X), $(1,2)^*$ -GGC(X), $(1,2)^*$ -GGSC(X), $(1,2)^*$ -GC(X), $(1,2)^*$ -GC(X), (1,

The collection of all $(1,2)^*$ -g-open (resp. $(1,2)^*$ - ω open, $(1,2)^*$ -gs-open, $(1,2)^*$ -gsp-open, $(1,2)^*$ - α gopen, $(1,2)^*$ - α gs-open, $(1,2)^*$ -sg-open, $(1,2)^*$ -g*sopen, $(1,2)^*$ - α -open, $(1,2)^*$ -semi-open) sets is denoted by $(1,2)^*$ -GO(X) (resp. $(1,2)^*$ - ω O(X), $(1,2)^*$ -GSO(X), $(1,2)^*$ -GSPO(X), $(1,2)^*$ - α gO(X), $(1,2)^*$ - α GSO(X), $(1,2)^*$ -SGO(X), $(1,2)^*$ -G*SO(X), $(1,2)^*$ - α O(X), $(1,2)^*$ -SO(X)). We denote the power set of X by P(X).

Definition 2.6 [16]Subset H of a BTPS X is said to be $(1,2)^*$ -locally closed if H = U \cap F, where U is $\tau_{1,2}$ -open and F is $\tau_{1,2}$ -closed in X.

Remark 2.7

(1) Every $\tau_{1,2}$ -open set is $(1,2)^*$ -g*s-open [16].

(2) Every $(1,2)^*$ -semi-open set is $(1,2)^*$ -g*s-open [11].

(3) Every (1,2)*-g*s-open set is (1,2)*-sg-open[16].

- (4) Every $(1,2)^*$ -semi-cld set is $(1,2)^*$ -gs-cld [16].
- (5) Every $\tau_{1,2}$ -closed set is $(1,2)^*$ -gs-cld [16].

III.(1,2)*-ϔ-CLOSED SETS IN BITOPOLOGICAL SPACES

We introduce the following definition. **Definition 3.1**A subset H of a BTPS X is called a $(1,2)^*$ - $\ddot{\Upsilon}$ -closed (briefly, $(1,2)^*$ - $\ddot{\Upsilon}$ -cld) set if $\tau_{1,2}$ cl(H) \subseteq U whenever H \subseteq U and U is $(1,2)^*$ -gs-open in X. **Proposition 3.2**Every $\tau_{1,2}$ -closed set is $(1,2)^*$ - \ddot{Y} - cld.

Proof: If His any $\tau_{1,2}$ -closed set in Xand Gis any $(1,2)^*$ -gs-open set containing H, then $G \supseteq H = \tau_{1,2}$ -cl(H). Hence H is $(1,2)^*$ - $\dot{\Upsilon}$ -cld.

The converse of Proposition 3.2 need not be true as seen from the following example.

Example 3.3Let $X = \{x, y, z\}, \tau_1 = \{\phi, X, \{x, y\}\}$ and $\tau_2 = \{\phi, X\}$. Then the sets in $\{\phi, \{x, y\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{z\}\}$ are called $\tau_{1,2}$ -closed.Here, $H = \{x, z\}$ is $(1,2)^*$ - \dot{Y} -cld set but not $\tau_{1,2}$ -closed.

Proposition 3.4Every $(1,2)^*$ - $\ddot{\Upsilon}$ -cld set is $(1,2)^*$ - g^*s -cld.

Proof: If H is a $(1,2)^*$ - \ddot{Y} -cld subset of X and G is any $(1,2)^*$ -gs-open set containing H, then G $\supseteq \tau_{1,2}$ -cl(H) $\supseteq (1,2)^*$ -scl(H). Hence H is $(1,2)^*$ -g*s-cld in X.

The converse of Proposition 3.4 need not be true as seen from the following example.

Example 3.5In Example 3.3,Here, $H = \{z\}$ is $(1,2)^*$ -g*s-cld but not $(1,2)^*$ - $\dot{\Upsilon}$ -cld set in X.

Proposition 3.6Every $(1,2)^*$ - $\dot{\Upsilon}$ -cld set is $(1,2)^*$ - ω -cld.

Proof: Suppose that $H \subseteq G$ and G is $(1,2)^*$ -semiopen in X. Since every $(1,2)^*$ -semiopen set is $(1,2)^*$ -gs-open and H is $(1,2)^*$ - $\ddot{\Upsilon}$ -cld, therefore $\tau_{1,2}$ -cl(H) \subseteq G. Hence H is $(1,2)^*$ - ω -cld in X.

The converse of Proposition 3.6 need not be true as seen from the following example.

Example 3.7Let $X = \{x, y, z\}, \tau_1 = \{\phi, X, \{x\}\}$ and $\tau_2 = \{\phi, X, \{y, z\}\}$. Then the sets in $\{\phi, \{x\}, \{x\}\}$

International Journal of Scientific Research and Engineering Development--- Volume 4 Issue 3, May- June 2021 Available at <u>www.ijsred.com</u>

{y, z}, X} are called $\tau_{1,2}$ -open and the sets in { ϕ , X, {x}, {y, z}} are called $\tau_{1,2}$ -closed.Here, H = {x, z} is (1,2)*- ω -cld but not (1,2)*- $\ddot{\Upsilon}$ -cld set in X.

Proposition 3.8Every $(1,2)^*$ -g*s-cld set is $(1,2)^*$ -sg-cld.

Proof: Suppose that $H \subseteq G$ and G is $(1,2)^*$ -semiopen in X. Since every $(1,2)^*$ -semiopen set is $(1,2)^*$ -gs-open and H is $(1,2)^*$ -g*s-cld, therefore $(1,2)^*$ -scl(H) $\subseteq G$. Hence H is $(1,2)^*$ -sg-cld in X.

The converse of Proposition 3.8 need not be true as seen from the following example.

Example 3.9Let X = {x, y, z}, $\tau_1 = \{\phi, X, \{x\}\}$ and $\tau_2 = \{\phi, X, \{y, z\}\}$. Then the sets in $\{\phi, \{x\}, \{y, z\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{x\}, \{y, z\}\}$ are called $\tau_{1,2}$ -closed.Here H = {x, y} is(1,2)*-sg-cldbut not (1,2)*-g*s-cld set in X.

Proposition 3.10Every $(1,2)^*-\omega$ -cld set is $(1,2)^*-\alpha gs$ -cld.

Proof: If H is a $(1,2)^*-\omega$ -cld subset of X and G is any $(1,2)^*$ -semi-open set containing H, then G $\supseteq \tau_{1,2}$ -cl(H) $\supseteq (1,2)^*-\alpha$ cl(H). Hence H is $(1,2)^*-\alpha gs$ -cld in X.

The converse of Proposition 3.10 need not be true as seen from the following example.

Example 3.11Let X = {x, y, z}, τ_1 = { ϕ , X, {x}} and τ_2 = { ϕ , X}. Then the sets in { ϕ , {x}, X} are called $\tau_{1,2}$ -open and the sets in { ϕ , X, {y, z}} are called $\tau_{1,2}$ -closed.Here,H = {y} is (1,2)*- αgs -cld but not (1,2)*- ω -cld set in X.

Proposition 3.12Every $(1,2)^*$ - $\ddot{\Upsilon}$ -cld set is $(1,2)^*$ -g-cld.

Proof: If H is a $(1,2)^*$ - $\dot{\Upsilon}$ -cld subset of X and G is any $\tau_{1,2}$ -open set containing H,since every $\tau_{1,2}$ -open

set is $(1,2)^*$ -gs-open, we have $G \supseteq \tau_{1,2}$ -cl(H). Hence H is $(1,2)^*$ -g-cld in X.

The converse of Proposition 3.12 need not be true as seen from the following example.

Example 3.13Let X = {x, y, z}, $\tau_1 = \{\phi, X, \{x\}\}$ and $\tau_2 = \{\phi, X, \{y, z\}\}$. Then the sets in { ϕ , {x}, {y, z}, X} are called $\tau_{1,2}$ -open and the sets in { ϕ , X, {x}, {y, z}} are called $\tau_{1,2}$ -closed.Here, H = {x, y} is (1,2)*-g-cld but not (1,2)*- $\ddot{\Upsilon}$ -cld set in X.

Proposition 3.14Every $(1,2)^*$ - \ddot{Y} -cld set is $(1,2)^*$ - αgs -cld.

Proof: If H is a $(1,2)^*$ - \ddot{Y} -cld subset of X and G is any $(1,2)^*$ -semi-open set containing H, since every $(1,2)^*$ -semi-open set is $(1,2)^*$ -gs-open, we have G $\supseteq \tau_{1,2}$ -cl(H) $\supseteq (1,2)^*$ - α cl(H). Hence H is $(1,2)^*$ - α gs-cld in X.

The converse of Proposition 3.14 need not be true as seen from the following example.

Example 3.15Let X = {x, y, z}, $\tau_1 = \{\phi, X, \{x\}\}$ and $\tau_2 = \{\phi, X, \{y, z\}\}$. Then the sets in { ϕ , {x}, {y, z}, X} are called $\tau_{1,2}$ -open and the sets in { ϕ , X, {x}, {x}, {y, z}} are called $\tau_{1,2}$ -closed.Here,H = {x, z} is (1,2)*- αgs -cld but not (1,2)*- \ddot{T} -cld set in X.

Proposition 3.16Every $(1,2)^*$ - $\ddot{\Upsilon}$ -cld set is $(1,2)^*$ - α g-cld.

Proof: If H is a $(1,2)^*$ - $\ddot{\Upsilon}$ -cld subset of X and G is any $\tau_{1,2}$ -open set containing H, since every $\tau_{1,2}$ open set is $(1,2)^*$ -gs-open, we have $G \supseteq \tau_{1,2}$ -cl(H) $\supseteq (1,2)^*$ - α cl(H). Hence H is $(1,2)^*$ - α g-cld in X.

The converse of Proposition 3.16 need not be true as seen from the following example.

International Journal of Scientific Research and Engineering Development--- Volume 4 Issue 3, May- June 2021 Available at <u>www.ijsred.com</u>

X, {z}, {x, y}} are called $\tau_{1,2}$ -closed.Here, H = {x, z} is $(1,2)^*-\alpha$ g-cld but not $(1,2)^*-\ddot{\Upsilon}$ -cld set in X.

Proposition 3.18Every $(1,2)^*$ - \ddot{Y} -cld set is $(1,2)^*$ -gs-cld.

Proof: If H is a $(1,2)^*$ - \ddot{Y} -cld subset of X and G is any $\tau_{1,2}$ -open set containing H, since every $\tau_{1,2}$ open set is $(1,2)^*$ -gs-open,we have G $\supseteq \tau_{1,2}$ -cl(H) $\supseteq (1,2)^*$ -scl(H). Hence H is $(1,2)^*$ -gs-cld in X.

The converse of Proposition 3.18 need not be true as seen from the following example.

Example 3.19Let X = {x, y, z}, $\tau_1 = \{\phi, X, \{x\}\}$ and $\tau_2 = \{\phi, X\}$. Then the sets in $\{\phi, \{x\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{y, z\}\}$ are called $\tau_{1,2}$ -closed.Here, H = {z} is (1,2)*-gs-cld but not (1,2)*- $\dot{\Upsilon}$ -cld set in X.

Proposition 3.20Every $(1,2)^*$ - \ddot{Y} -cld set is $(1,2)^*$ -gsp-cld.

Proof: If H is a $(1,2)^*$ - $\dot{\Upsilon}$ -cld subset of X and G is any $\tau_{1,2}$ -open set containing H, every $\tau_{1,2}$ -open set is $(1,2)^*$ -gs-open, we have G $\supseteq \tau_{1,2}$ -cl(H) $\supseteq (1,2)^*$ spcl(H). Hence H is $(1,2)^*$ -gsp-cld in X.

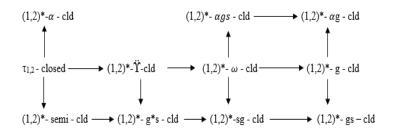
The converse of Proposition 3.20 need not be true as seen from the following example.

Example 3.21In Example 3.19,Here,H = $\{z\}$ is $(1,2)^*$ -gsp-cld but not $(1,2)^*$ - $\dot{\Upsilon}$ -cld set in X.

Remark 3.22The following example shows that $(1,2)^*$ - \ddot{Y} -cld sets are independent of $(1,2)^*$ - α -cld sets and $(1,2)^*$ -semi-cld sets.

Example 3.23Let $X = \{x, y, z\}, \tau_1 = \{\phi, X, \{x, y\}\}$ and $\tau_2 = \{\phi, X\}$. Then the sets in $\{\phi, \{x, y\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{z\}\}$ are called $\tau_{1,2}$ -closed.Here, $H = \{x, z\}$ is $(1,2)^*$ - \ddot{Y} -cld but it is neither $(1,2)^*$ - α -cld nor $(1,2)^*$ -semi-cld in X. **Example 3.24**Let $X = \{x, y, z\}, \tau_1 = \{\phi, X, \{x\}\}$ and $\tau_2 = \{\phi, X\}$. Then the sets in $\{\phi, \{x\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{y, z\}\}$ are called $\tau_{1,2}$ -closed.Here, $H = \{y\}$ is $(1,2)^*-\alpha$ -cldas well as $(1,2)^*$ -semi-cld in X but it is not $(1,2)^*-\ddot{\Upsilon}$ cldin X.

Remark 3.25From the above discussions and known results in [11,15,16] we obtain the following diagram, where $A \rightarrow B$ (resp. A \checkmark B)represents A implies B but not conversely (resp. A and B are independent of each other).



None of the above implications is reversible as shown in the remaining examples and in the related papers [15,16].

REFERENCES

- Abd El-Monsef, M. E., El-Deeb, S. N. and Mahmoud, R. A.: β-open setsand β-continuous mapping, Bull. Fac. Sci. Assiut Univ, 12(1983), 77-90.
- [2] Andrijevic, D.: Semi-preopen sets, Mat. Vesnik, 38(1986), 24-32.
- [3] Arya, S. P. and Nour, T.: Characterization of s-normal spaces, Indian J.Pure. Appl. Math., 21(8)(1990), 717-719.
- [4] Bhattacharya, P. and Lahiri, B. K.: Semi-generalized closed sets intopology, Indian J. Math., 29(3)(1987), 375-382.
- [5] Duszynski, Z., Jeyaraman, M., Joseph Israel, M. and Ravi, O.: A new generalization of closed sets in bitopology, South Asian Journal of Mathematics, 4(5)(2014), 215-224.
- [6] Kelly, J.C. :Bitopological spaces, Proc.LondonMath.Soc., 3(13)(1963), 71-89.
- [7] Levine, N.: Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [8] LellisThivagar, M., Ravi, O. and Abd El-Monsef, M. E.: Remarks on bitopological (1,2)*-quotient mappings, J. Egypt Math. Soc., 16(1) (2008), 17-25.
- [9] Rajamani, M., and Viswanathan, K.: On αgs-closed sets in topological spaces, Acta Ciencia Indica, XXXM (3)(2004), 21-25.
- [10] Ravi, O., Thivagar, M. L. and Hatir, E.: Decomposition of $(1,2)^*$ continuity and $(1,2)^*$ - α -continuity, Miskolc Mathematical Notes., 10(2) (2009), 163-171.
- [11] Ravi, O. and Lellis Thivagar, M.: A bitopological (1,2)*-semigeneralized continuous maps, Bull. Malays. Math. Sci. Soc., (2), 29(1) (2006), 79-88.

International Journal of Scientific Research and Engineering Development-– Volume 4 Issue 3, May- June 2021 Available at <u>www.ijsred.com</u>

- [12] Ravi, O. and Lellis Thivagar, M.: On stronger forms of (1,2)*-quotient mappings in bitopological spaces, Internat. J. Math. Game Theory and Algebra., 14(6) (2004), 481-492.
- [13] Ravi, O. and Thivagar, M. L.: Remarks on λ -irresolute functions via $(1,2)^*$ -sets, Advances in App. Math. Analysis, 5(1) (2010), 1-15.
- [14] Ravi, O., Pious Missier, S. and Salai Parkunan, T.: On bitopological (1,2)*-generalized homeomorphisms, Int J. Contemp. Math. Sciences., 5(11) (2010), 543-557.
- [15] Ravi, O., Pandi, A., Pious Missier, S. and Salai Parkunan, T.: Remarksonbitopological (1,2)*-rω-Homeomorphisms, International Journal of Mathematical Archive, 2(4) (2011), 465-475.
- [16] Ravi, O., Thivagar, M. L. and Jinjinli.: Remarks on extensions of (1,2)*-g-closed maps, Archimedes J. Math., 1(2) (2011), 177-187.
- [17] Sheik John, M.: A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, September 2002.