
International Journal of Scientific Research and Engineering Development-– Volume 4 Issue 3, May -June 2021

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 1541

Directory Simulation Using In-memory Tries

Sandhya S*, Sparsh G Sarode**
*(Computer Science and Engineering, R.V. College of Engineering, Bangalore, India

Email: sandhya.sampangi@rvce.edu.in)
** (Computer Science and Engineering, R.V. College of Engineering, Bangalore, India

Email: sarodesparsh@gmail.com)

--************************----------------------------------

Abstract:
Many applications depend on file directory simulation to filter out files/directories before they are

persisted in a storage system. This paper proposes an efficient way of using in-memory Trie data structure

to deal with this problem and gives an upper bound to some of the operations that are performed on this

data structure. In systems where moving/traversing large numbers of files using the underlying OS is

costly, we can simulate it using in-memory Tries. Applications of this are not limited to just caching but

also can be extended to virtual directories that provide an in-memory interface for other applications.

Another application could be fast file searching through the directories.

 In the following sections, we start with an introduction to Tries, giving algorithms and time

complexity for some of the operations on Tries. The later sections redefine Tries for the specific

application and finally gives an analysis of the obtained results.

Keywords —Tries, Data Structures, Trees, File system, In-memory, Virtual directories

--************************----------------------------------

I. INTRODUCTION

 Several computing applications involve the

management of large sets of strings. For example, a

huge amount of data are stored as text documents,

starting from news archives, law collections, and

business reports to repositories of documents

gathered online. These collections involve many

millions of words and this number keeps growing

more or less linearly with collections size. Other

applications also involve managing huge numbers

of strings such as bibliographic databases and

genomic data indexes. Tries find their way into

most of these applications.

 One another application of Tries includes

simulating the directory. The nature of its recursive

structure is very similar to the Tries structure,

which brings us to the structure of the Trie. A Trie

is a data structure that is used to store and retrieve

information. The nodes in a Trie store the

characters of a string. By arranging these nodes to

form a tree(Trie), the information can be retrieved

from it by traversing the tree. In 1959, the Tries

were considered in computing for the very first time

by Rene de la Briandais.

 Though initially tries were mainly used on

character strings, they are not limited to the

character strings. In our case, we can key it with the

individual segment of the file path (Eg: “to”, ”path”

in “path/to/file/my.txt”).

A. Tries

 Trie, denoted by t, is a tree, in particular, it

is a rooted tree. Let’s denote the root node of the

tree as r. Every node of the Trie has n pointer to

different nodes. n depends on the application of the

trie, for example, n is 26 (number of English

alphabets) if trie is used to store English words.

Every pointer is initialized to null. In addition to

pointers, every node of the Trie logically stores a

character. A character is the smallest atomic unit

of the string to be stored in the Trie. The solid

RESEARCH ARTICLE OPEN ACCESS

International Journal of Scientific Research and Engineering Development-– Volume 4 Issue 3, May -June 2021

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 1542

definition of character and string depends on the

application.

 For the sake of describing the following

algorithms, we will assume a few things about a

node in the Trie. A node consists of three attributes:

• character – The character that the node

stores

• map – A map that maps character to node

• is_end – A boolean value that denotes

whether the node represents an end of a

string

Note that this is just a general description of a node

and it is subject to change for different applications.

1) Insert Operation Algorithm:

 The insert operation takes a string of

characters and stores it in the Trie. The time

complexity of this algorithm is O(c) where c is the

number of characters in the string.

Fig. 1 Insert operation algorithm

2) Search operation algorithm

 The search operation takes a string of

characters and searches it in the Trie. The time

complexity of this algorithm is O(c) where c is the

number of characters in the string.

Fig. 2 Search operation algorithm

The logic of the above two algorithms can be used

for other functions like has_prefix() and many

more.

 The space complexity of the Trie depends

on the number of common prefixes across all the

strings that are stored in the Trie. Best case

scenario: O(length of the longest string). Worst

case scenario: O(sum of the length of all the

strings).

II. METHODOLOGY

 In the previous section, we formally defined

a Trie and discussed different operations that can be

performed on Tries and their time complexity. In

this section, we will look into a specific application

of Tries which is directory simulation.

A. Directory Structure

 Let’s start by exploring real directories

implemented by any Linux OS. Directories have a

recursive structure. Every directory has zero or

more files and zero or more subdirectories. Every

Linux file system has a root directory. Both

subdirectory and file names can be changed by

traversing to the particular directory from the root

directory. Every file in the file system can be

represented in the form of a complete file path like

“/user/john/desktop/words.txt”. Here “/” is an OS-

dependent file separator. For the sake of simplicity,

International Journal of Scientific Research and Engineering Development-– Volume 4 Issue 3, May -June 2021

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 1543

we will restrict ourselves to the Linux file system.

This can be easily extended for Windows as well.

B. Definitions

 We shall now see more specific definitions

of characters and strings for our application.

• character – A character is either a file

name with or without extension (Eg:

words.txt) or a directory name without

extension (Eg: desktop). Hence, there are

two types of characters: file and directory.

• string - A string is a sequence of characters

separated by OS file separator “/” with

constraints being that only the last character

may be file type and that all strings start

with OS file separator. Examples of valid

strings: “/tmp/words.txt”, “/etc/hosts.txt”,

“/usr”, “/”

 Every node in Trie will have the following

attributes/properties:

• files – A Set of file type characters

• subdirectories – A Map that maps directory

type characters to nodes

 Note that in this specific Trie application,

the is_end attribute, as defined earlier, is not

required and the character attribute (as defined in

the last section) is replaced by files.

C. Operations on Trie

1) Insert Operation

 The insertion algorithm remains the same as

described in the previous section. The only

difference is that we can no longer assume that

maps take constant time to retrieve since they use

strings as keys(instead of English characters). If we

include the time taken by maps, the final time

complexity will be O(c * log(l)) where l is the

average length of the character.

2) Search Operation

 The search algorithm also remains the same

as described in the previous section. Again since we

can no longer assume that maps take constant time,

the time complexity will be O(c * log(l)).

3) Depth First Search Operation

 Once the Trie is built, there will be a

requirement to traverse the Trie for further analysis.

Depth First Search algorithm can be used to

traverse the Trie in such cases. The time complexity

of this algorithm is O(n + log(L)) where n is the

number of nodes in the Tries and L is the total

number of entries in the map across all nodes.

Fig. 3 DFS operation

4) Merge Operation

 There might be a requirement to merge two

pre-built Tries to form a new Trie in some

applications. Merge operation provides a recursive

solution for that. The time complexity of this

algorithm is O(n + log(L)) where n is the number of

nodes in the Tries and Lis the total number of

entries in the map across all nodes.

Fig. 4 Merge Operation

International Journal of Scientific Research and Engineering Development-– Volume 4 Issue 3, May -June 2021

 Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 1544

III. RESULTS AND PERFORMANCE

EVALUATION

 This approach has been successfully

implemented and tested against some of the Linux

commands such as ‘find’ and ‘locate’. ‘find’ is a

command-line tool that searches for files in the file

system in UNIX-like OSs. It does so by fetching

file details from the underlying file systems as we

may expect. So, the in-memory approach that’s

proposed here theoretically should be much faster

when compared to using ‘find’. On the other hand,

‘locate’ uses a database to search through the files

in the system. But this requires it to be updated

frequently as and when there are file changes in the

file system. Theoretically, the in-memory approach

should be at least as fast as using ‘locate’

A) Experimental Evaluation

 In order to test the performance, 2,00,000

files were created on Debian-based Linux OS and

the ‘find’ command was used to search for a

particular file. This took 35 mins to fetch results.

The in-memory Tries approach could fetch the

same result in 1.34s as expected. However, the

Tries approach took 10 minutes to build the Trie

from the file system which is still better than using

the ‘find’ command. The ‘locate’ command took 15

minutes to update the database and 1 minute to

fetch the results.

IV. CONCLUSION

 In this paper, a new in-memory approach

using Tries has been proposed to simulate a file

directory. The primary motivation of this paper is to

make file searching operations faster than other

available methods, but the applications of this are

not limited to file searching. Other applications

primarily involve the cloud where there could be

conditional migration of data based on types of files

stored in different storage nodes. In such situations

merging all the files in a separate storage node just

to validate the condition will increase the cloud

cost. The proposed solution finds its way into

solving such problems without actually having to

move the files to a separate storage node.

 However there are trade-offs for this

approach. One such limitation is the initial

overhead of constructing Tries from the file system.

This limitation is evident and cannot be overcome

since the files stored in the file system have to be

visited at least once. Another limitation is that

additional usage of memory might result in

increased cloud costs. However, to tackle this

problem, caching techniques such as LRU caching

can be used.

 This paper also provides a few

implementation details which can be incorporated

into one’s specific application easily. The

performance analysis of this approach has been

done and found to be more efficient than some of

the existing Linux tools such as ‘find’ and ‘locate’

both of which use different approaches to find a file

in the file system.

ACKNOWLEDGMENT

 I would like to thank my college, R.V.

College of Engineering and Computer Science and

Engineering Department for giving me an

opportunity to conduct this extensive research. I

also thank my professor Dr. Sandhya S for

providing valuable guidance during the research.

REFERENCES
[1] Heinz, Steffen & Zobel, Justin & Williams, Hugh. (2002). Burst Tries:

A Fast, Efficient Data Structure for String Keys. ACM Trans. Inf.

Syst.. 20. 192-223. 10.1145/506309.506312.

[2] Ribeiro, Pedro & Silva, Fernando. (2010). G-tries: An efficient data

structure for discovering network motifs. Proceedings of the ACM

Symposium on Applied Computing. 1559-1566.

10.1145/1774088.1774422.

[3] R. Salunkhe, A. D. Kadam, N. Jayakumar and D. Thakore, "In search

of a scalable file system state-of-the-art file systems review and map

view of new Scalable File system,"2016 International Conference on

Electrical, Electronics, and Optimization Techniques (ICEEOT), 2016,

pp. 364-371, doi: 10.1109/ICEEOT.2016.7755371.

[4] C. Ghasemi, H. Yousefi, K. G. Shin and B. Zhang, "A Fast and
Memory-Efficient Trie Structure for Name-Based Packet

Forwarding,"2018 IEEE 26th International Conference on Network

Protocols (ICNP), 2018, pp. 302-312, doi: 10.1109/ICNP.2018.00046.
[5] J. Park, J. Park and J. Choi, "Web-Based Document Classification

Using a Trie-Based Index Structure,"2007 IEEE/WIC/ACM

International Conferences on Web Intelligence and Intelligent Agent

Technology - Workshops, 2007, pp. 52-55, doi: 10.1109/WI-

IATW.2007.70.

[6] W. Lu and S. Sahni, "Packet Classification Using Space-Efficient

Pipelined Multibit Tries," in IEEE Transactions on Computers, vol. 57,

no. 5, pp. 591-605, May 2008, doi: 10.1109/TC.2007.70846.

[7] J. Tan, X. Liu, Y. Liu and P. Liu, "Speeding up pattern matching by
optimal partial string extraction,"2011 IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), 2011, pp. 1030-

1035, doi: 10.1109/INFCOMW.2011.5928778.

