
International Journal of Scientific Research and Engineering Development– Volume 4 Issue 3, May-June 2021

Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED:All Rights are Reserved Page 1483

Feature Design of Maintainable Web application Using React js

ARPIT KUMAR

Computer Science and Engineering, RV College of Engineering, and Bangalore

Email: arpitkumar.cs17@rvce.edu.in)

--************************----------------------------------

Abstract:
Because of the increasing demand for advanced functionality as well as the short time-to-market, web

application maintainability is becoming increasingly important. Fixing errors, reusing functionality, and

efficiently adding new features are critical for making the application profitable for the software company

as well as valuable for the end user. Modern frameworks and libraries, such as React, help web developers

create sophisticated applications by utilizing high-quality solutions known as architectural patterns. The

primary goal of this paper is to use the standard design system framework for UI redesign and the

development of the target digital product. The purpose of this redesign is to increase UI consistency and

quality, making the design and development process more efficient while also allowing designers and

developers to share a common vocabulary.

Keywords —MVC, GUI, React js, Virtual DOM.

--************************----------------------------------

I. INTRODUCTION

Architectural patterns have evolved as web

applications have progressed from simple web

pages to sophisticated corporate products, providing

web engineers with high-quality solutions to

recurring problems. Web developers must stay up

to date on new technologies and try them out.

Given that ReactJS is one of them, it's no wonder

that it's sweeping the codebase. ReactJS is a

frontend development library written in JavaScript

that is open-source. Users nowadays want faster

and more dynamic webpages, while developers

need a modern and flexible development

environment free of boilerplate. As a result,

ReactJS [1] is rising in popularity among frontend

developers. ReactJS is a frontend development

library written in JavaScript that is open-source.

Users nowadays want faster and more dynamic

webpages, while developers need a modern and

flexible development environment free of

boilerplate. As a result, ReactJS is rising in

popularity among frontend developers [2]. The

architectural pattern used for the client-side

application may change depending on the design of

these APIs [5].The setting is fast-paced, with agile

development and quick iterations [3], as it is in

many software development businesses. The

software's maintainability is critical for establishing

lucrative projects that satisfy both the customer and

the end-user. As a result, maintaining the web

application's dynamic and adaptability to new

changes and features becomes a top priority.

A. React Hooks

React Hooks are used to connect more complex

function components to React features. Hooks in

React have a name convention that starts with the

word "use." A function component does not have

state by default; instead, a React hook named

useState can be used to keep the state throughout

the life of the component. All hooks, including

useState, can be used multiple times within the

same component.

B. Context API

The Context API is a built-in method for sharing

data between React components without utilizing

props-drilling. The createContext method in the

RESEARCH ARTICLE OPEN ACCESS

International Journal of Scientific Research and Engineering Development-Volume 4 Issue 3, May-June 2021

Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 1484

React library is used to create a Context that can be

shared by numerous components in the component

tree. A Provider on the Context instance is used to

add data to the Context and make it available to

children components. The Provider is a component

with a single property named value that specifies

the data for the Context, which can be variables,

functions, or objects. Context data can be retrieved

from any child component using a Consumer

accessible on the Context instance by wrapping

children components inside the Provider component.

Instead of relying on a single Context instance, the

application makes use of many contexts for various

reasons.

C. Model-View-Controller

The MVC pattern is one of the earliest

architectural patterns [8], and it was originally used

to create GUIs for desktop programmes. It is made

up of three parts: the Model (M), the View (V), and

the Controller (C) (C). The MVC architecture's

ultimate purpose is to decouple the user interface

from the data that it represents.

Figure. 1. Client-side MVC architectural pattern

D. Redux In React

React applications typically employ Redux as a

data management solution, and a library called

react-redux can be used to make the Redux store

accessible from every React component. By linking

the Redux store to the components, every

component in the application can update and read

data from the Redux store without having to use

props drilling. The connect function in the react-

redux library is used to extend React components

with functionality for dispatching actions and

reading state from the Redux store. The connect

function must be able to access the application's

instantiated Redux store, which is accomplished

using the Provider component from the react-redux

package.

II. PERFORMANCE

ReactJS is well-known for its outstanding

performance. This is one of the fundamental

characteristics that distinguishes the frameworks

from the many other frameworks available in the

serious sector. The virtual DOM feature of the

framework is primarily responsible for the

framework's highly effective execution. ReactJS

does this by maintaining a virtual document [4]

object model in memory. Rather of refreshing the

browser DOM immediately after making a

modification to the currently displayed website

page, first modifications to virtual DOM are made.

After making changes to the virtual DOM, a diff()

algorithm is used, which considers the tow, the

virtual DOM, and the browsing DOM, and only

significant and wanted nodes of the programme

DOM tree are updated, resulting in blazing fast

application execution.

III. WORKING

The M-V-C plan stands for model view controller.

In web applications as well as front-end apps

running on any platform, worldview is common and

important for UI improvement. If web-applications

are present, DOM communicates with physical

View. The DOM is created using an HTML layout

that is derived from a different document, a content

square, or a precompiled format work. The View

element gives life to the printed layout as a DOM.

As part of the document object model tree's life

cycle, it assumes a major role in dealing with

Events and controlling the document object model

tree. A point of view is valuable if and only if it

allows for client cooperation while also displaying

the relevant information. Information is a type of

data that is retrieved from a Data-Store, which can

be a database, a web application, or a local store.

Frameworks provide a way to connect the view to

the data store, ensuring that database changes are

International Journal of Scientific Research and Engineering Development-Volume 4 Issue 3, May-June 2021

Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 1485

automatically reflected in the view. Data Binding

[12] is the term used to describe the process of

pushing scheduled information updates. There are a

slew of application programme interfaces, or APIs,

that make this process a breeze. The M-V-C

worldview is completed by the C component, such

as the Controller, which draws in the other two

components, such as the model and the view, and

allows the information model stream into the View

and client events out of View, causing changes in

the Model.

To explore how React handles these tasks, you'll

need to learn a lot more about components, starting

with the Component. In React, the Component is

the most important structure. The entire user

interface can be planned by assembling a tree of

several components. The render() technique creates

an intermediate DOM that displays all of the React

components. A Call to React, as depicted in Figure

2. The renderComponent() technique on the root

Component causes the intermediate DOM to be

produced by recursively travelling down the

Component tree. After a while, this intermediary

DOM appeared. React creates the component tree

as a mix of multiple XML nodes using an

advantageous XML-based expansion to JavaScript

known as the JSX. This makes DOM representation

and viewing much easier and more useful. In

addition, JSX plays an important role in optimizing

the interaction between event handlers and

properties as XML characteristics. The final

JavaScript is created with the help of an order line

and an in-program device.

A JSX XML node maps a Component in a

straightforward manner. It's important to remember

that React functions independently of JSX, and that

JSX's role is limited to decoupling the task of

producing intermediate DOM. Life Cycle of a

Component Every component in the ReactJS

framework has a very precise lifetime and contains

a state-machine with three distinct states. A

Component's life is extended by the Mounting

method. The component tree, also known as the

Intermediate DOM, is created when mounting goes

through a render-pass. After that, the tree is

converted into a container node in the true

document object model. When the

React.RenderComponent() approach is called, the

full procedure takes place.

When the state of a component is updated using

the setState() strategy or the properties are modified

using the setProps() approach, the component is

refreshed. A call to the render()method follows,

which synchronizes the archive object model with

information like as props and state. Between

refreshes, Respond calculates the difference

between the previous component-tree and the

freshly produced tree. This progression has been

greatly improved, and a leader has been added to

limit the true DOM control. Un-mounted is the final

state. If a component that will in general be a child

is no longer formed in a render() call, this will

happen. Engineers frequently don't have to worry

about this and simply let React do its job. It would

have been a serious infraction if react had not

educated when it switched between the Mounted-

Update-Unmounted stages. In any event, such is not

the case, and snares are provided that can be

superseded to alert at any time a state change occurs.

IV. LIMITATIONS

React has a few limitations that should be

examined before using it for any project

development. These are the following: The React

only deals with the View material in a versatile

view controller or MVC. As a result, additional

tooling is necessary to complete the project

development. For a couple of developers, using

inline formats and JSX can be a very unpredictable

and exhausting task. Similarly, if ReactJS is used,

disappointments occur at build time rather at

runtime, as is the case with other languages and

frameworks, which can be perplexing and tiresome

at times.

V. CONCLUSIONS

Despite a few minor flaws, ReactJS is undeniably

superior. The modern web is becoming more

distinct and client-centric by the day. Patterns of

client experience configuration are constantly

International Journal of Scientific Research and Engineering Development-Volume 4 Issue 3, May-June 2021

Available at www.ijsred.com

ISSN : 2581-7175 ©IJSRED: All Rights are Reserved Page 1486

evolving and changing. Customer contents now

ensure that only the most important and

fundamental information is distributed, and that a

consistent and pleasing experience is maintained

across the entire internet. Straightforwardness,

effectiveness, and more conspicuous openness are

in demand in today's environment. ReactJS has a lot

of power and shines when it comes to meeting the

requirements of current patterns. In general, it can

be said that ReactJS will undoubtedly have an

impact on the way online apps are built.

REFERENCES

[1] Sanchit Aggarwal, ‘Modern Web-Development using ReactJS’,

International Journal of Recent Research Aspects ISSN: 2349-7688,

Vol. 5, Issue 1, March 2018.
[2] Anurag Kumar and Ravi Kumar Singh, “COMPARATIVE

ANALYSIS OF ANGULARJS AND REACTJS”, “International

Journal of Latest Trends in Engineering and Technology”, vol. 25, no.
6, pp. 34–40, 2011.

[3] Arshad Javeed, “Performance Optimization Techniques for ReactJS”,

“International Conference on Electrical, Computer and Communication

Technologies”, vol. 37, no. 10, pp. 46–54, 2004.

[4] Khuat, Tung, “Developing a frontend application using ReactJS and

Redux”, “International Journal of Latest Trends in Engineering and

Technology”, vol. 28, no. 6, pp. 78–85, 2011.

[5] Annie Ying, Yunhui Zheng, Jim A. Laredo, “Opportunities in Software

Engineering Research for Web API Consumption”, “IEEE/ACM 1st
International Workshop on API Usage and Evolution (WAPI)”, vol. 85,

no. 12, pp. 2840–2859, 2012.

[6] K. Bak, Z. Diskin, M. Antkiewicz, K. Czarnecki, and A. Wasowski,
“Clafer: unifying class and feature modelling,” Software and System

Modelling, vol. 15, no. 3, pp. 811–845, 2016.

[7] S. D. Conte, H. E. Dunsmore, and V. Y. Shen. “Software Engineering
Metrics and Models”. Redwood City, CA, USA: Benjamin-Cummings

Publishing Co., Inc., 1986. ISBN: 0-8053- 2162-4.

[8] A. Leff and J. T. Rayfield. “Web-application development using the

Model/View/- Controller design pattern”. In: Proceedings Fifth IEEE

International Enterprise Distributed Object Computing Conference.

Sept. 2001, pp. 118–127. DOI: 10. 1109 / EDOC. 2001. 950428.

[9] C. Krupitzer, M. Breitbach, F. M. Roth, S. VanSyckel, G. Schiele, and

C. Becker, “A survey on engineering approaches for self-adaptive

systems (extended version),” 2018.
[10] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

Design Patterns: Elements of Reusable Object-oriented Software.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1995. ISBN: 0-201-63361-2.

[11] J. Floch, S. O. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and E.

Gjørven, “Using architecture models for runtime adaptability,” IEEE
Software, vol. 23, no. 2, pp. 62–70, 2006.

[12] J. Conallen, "Modelling Web application architectures with UML,"

Communications of the ACM, vol. 42, pp. 63-70, 1999.

[13] D. Rodriguez, R. Harrison, and M. Satpathy, "A generic model and

tool support for assessing and improving Web processes," in Proc.

IEEE Symposium, 2002, pp. 141-151.

[14] M. E. Fayad, M. Laitinen, and R. P. Ward, "Thinking objectively:

software engineering in the small," Communications of the ACM, vol.

43, pp. 115-118, 2000.

