Available at <u>www.ijsred.com</u>

RESEARCH ARTICLE

CFD ANALYSIS FOR USAGE OF PEEK MATERIAL FOR WHEELS

Akhilesh Kumar¹, N. V. Saxena²

¹ Research Scholar, Department of Mechanical Engineering, Millennium Institute of Technology

² Assistant Professor, Department of Mechanical Engineering, Millennium Institute of Technology,

Bhopal, Madhya Pradesh, India

Abstract

Automobile sector plays a key role in development of any economy. But it faces a lot of competition. So, one of the motto of automobile designer is to improve the mileage of the vehicle by reducing its weight. PEEK has emerged as a material which can be used for wheels of automobiles without hindering their strength. In the present work CFD analysis of wheels made of aluminium alloy with PEEK material has been carried out for various compositions of glass fibre. It was concluded that PEEK 90HMF20 can be best material for the replacement of Aluminium material.

Keywords: PEEK material, alloy wheel, vehicle, strength, safety factor

Introduction

In automotive industries, designers have a wide range of materials and processes to select from. Material mechanical properties and manufacturing parameters play decisive roles and the weaknesses and strengths of each manufacturing process need to be available to designers in these respects. Due to sophisticated wheels design, casting has become the dominant manufacturing process. Alloy wheel material has evolved too: car wheels alloys now contain 7 to 12% silicon content, and varying contents of magnesium in addition to aluminium, in order to meet the demand for metal-mould casting properties, corrosion and fatigue resistance.

Thermoplastic resins offer a number of advantages over conventional thermosetting resins like lower cycle time, high service temperature, excellent chemical and impact resistance, low coefficient of thermal expansion, excellent fire, smoke and toxicity performance, good fatigue performance, low wastage, and recyclability. Polyetheretherketone is the most attractive among high performance polymers, even if its use is limited by the high cost of supplying and processing and by the high sensibility to the molding processes.

Available at <u>www.ijsred.com</u>

Udasi and Kumbhare, 2014, Swamy& Reddy, 2016, Kumar et al., 2015, Gandhari & Subramaniam, 2020, Tadesse, 2017 worked for the development of PEEK material for wheels of automobiles and it was concluded that PEEK has capabilities to replace aluminium in automobile tyre industry as it has light weight and safety factor is better than aluminium.

Geometric Modeling

According to the dimensions of actual wheel, profile of the component was drawn using CATIA. After completing the drawing, the wheel model was then import in the ANSYS 13 for analysis.

Fig.1 Aluminium Alloy wheel.

Pre processing and Boundary Conditions

After geometric modeling, the geometry was meshed and boundary conditions were specified and the analysis was carried out in ANSYS 13.

For Aluminium Alloy

The alloy contains 11.00 wt.% Si, 1.00wt.% Mg, 1.50 wt.% .Ni, 1.00 wt.% Cu, 0.80wt.% Fe, 0.50 wt.% Mn and balance was Al.

Available at <u>www.ijsred.com</u>

Mechanical property	Value	Unit
Density	2770	kg m^-3
Coefficient of Thermal Expansion	0.000023	C^-1
Specific Heat	875	J kg^-1 C^-1
Compressive Yield Strength	$2800*10^5$	Pa
Tensile Ultimate Strength	3100*	Pa
Reference Temperature	22	С
Young's Modulus	$7.1 * 10^{10}$	Pa
Poisson's Ratio	0.33	
Bulk Modulus	$6.9608*10^{10}$	Pa
Shear Modulus	$2.6692*10^{10}$	Pa

Table: 1 Mechanical Properties of Aluminium Alloy

The mechanical properties were defined from the material list of ANSYS software data list. Static analysis was carried out in ANSYS software by specifying mechanical properties on Aluminium alloy wheel. The conditions specified were:

Max. Inflation pressure on rim circumference= 2100 KPa

Hub fix

Rotation velocity in Z -direction -200 rad/sec

Cylindrical support on outer hub area

Compression only support on rim circumference

For PEEK Material

From obtained values of Maximum. Inflation pressure on wheel 2100 KPa, Hub fix and Rotation velocity in Z –direction 200 rad/sec and after defining the mechanical property of different grade of PEEK polymer on wheel if wheel does not deform the we can easily replace Aluminium alloy wheel with PEEK polymer wheel

Mechanical property	Value	Unit
Density	1320	kg m^-3
Tensile Yield Strength	$46.8 \times 10-6$	Pa
Compressive Yield Strength	1470×106	Pa
Tensile Ultimate Strength	118×106	Р
Young's Modulus	100×106	Pa
Poisson's Ratio	22	
Bulk Modulus	3.6×109	Pa
Shear Modulus	0.39	Pa

Table: 2 Mechanical Property of PEEK Material

For PEEK With 30% Glass FIbre

Again Under same Maximum. Inflation pressure on wheel 2100 KPa, Hub fix and Rotation velocity in Z –direction 200 rad/sec and after defining the mechanical property of PEEK polymer with 30% Glass FIbre on wheel if wheel does not deform the we can easily replace Aluminium alloy wheel with PEEK polymer wheel.

Mechanical property	Value	Unit
Density	1520	kg m^-3
Tensile Yield Strength	$1.9*10^{7}$	Pa
Compressive Yield Strength	$1.18*10^{8}$	Pa
Tensile Ultimate Strength	$1.*10^{8}$	Pa
Young's Modulus	$4.06*10^9$	Pa
Poisson's Ratio	0.45	
Bulk Modulus	$1.3533*10^{10}$	Pa
Shear Modulus	$1.4*10^{9}$	Pa

Table: 3 Mechanical Property of PEEK With 30% Glass FIbre

Results and Discussion

Aluminium Alloy Wheel

Fig 2 Analysis of Aluminium Alloy Wheel

		Total Deformation	Equivalent Stress		
From	Minimum	4.2245*10 ⁻⁹ m	1626.4 Pa	the	above
analysis, it	Maximum	2.9035*10 ⁻⁶ m	2.2305*10 ⁶ Pa	was	found

that the wheel does not deform i.e. it can sustain under Max. inflation pressure on wheel 2100 KPa.

Available at www.ijsred.com

Analysis of Aluminium Alloy using PEEK Material

Fig .3: Analysis of Aluminium Alloy using PEEK Material

	Total Deformation	Equivalent Stress
Minimum	3.1092*10 ⁻⁸ m	413.14 Pa
Maximum	2.5178*10 ⁻⁵ m	1.1522 *10 ⁶ Pa

As can be seen from above fig that maximum deformation occurred on the axle of the wheel i.e it does not sustain under Max. inflation pressure on wheel 2100 KPa.

Analysis of Aluminium Alloy using PEEK Material With 30% Glass Fibre

Fig .4 Analysis of Aluminium Alloy using PEEK Material With 30% Glass FIbre

	Total Deformation	Equivalent Stress
Minimum	3.0479*10 ⁻⁸ m	1311.4 Pa
Maximum	2.7578*10 ⁻⁵ m	1.3203*10 ⁶ Pa

Table 4 Analysis of Aluminium Alloy using PEEK Material With 30% Glass FIbre

From above it can be said that the rib of the wheel does not sustain under Max. Inflation pressure on wheel 2100 KPa. So the wheel was redesigned.

Fig.5 Redesigned Aluminium Alloy wheel

And the same procedure was repeated for analysis of change model under same condition

Fig 6 Static Analysis of Redesigned Aluminium Alloy using PEEK

Available at <u>www.ijsred.com</u>

Fig.7 Static Analysis of Redesigned Aluminium Alloy using PEEK

Fig.8 Static Analysis of Redesigned Aluminium Alloy using PEEK With 30% Glass Fibre

Fig.9 Static Analysis of Redesigned Aluminium Alloy using PEEK 90HMF20

Fig.5.10 Static Analysis of Redesigned Aluminium Alloy using PEEK 90HMF40

Comparison Analysis Data of Different Material

		ANALYSIS DA REDESIGN WHEEL	ATA BEFORE OF ALLOY	ANALYSIS DA REDESIGN O WHEEL	ATA AFTER OF ALLOY
MATERIAL		Total Deformation (M)	Equivalent Stress (Pa)	Total Deformation (m)	Equivalent Stress (Pa)
Aluminum	Minimum	4.2245*10 ⁻⁹	1626.4	0.	2126.4
Alloy	Maximum	2.9035*10 ⁻⁶	$2.2305*10^{6}$	1.804*10 ⁻⁶	2.8711*10 ⁶
PEEK	Minimum	3.1092*10 ⁻⁸	413.14	0.	2590.3
	Maximum	2.5178*10 ⁻⁵	$1.1522 * 10^{6}$	9.1513*10 ⁻⁷	2.1316*10 ⁶
PEEK With 30% Glass Fiber	Minimum	3.0479*10 ⁻⁸	1311.4 Pa	0	1104.1
	Maximum	2.7578*10 ⁻⁵	$1.3203*10^{6}$	8.3276*10 ⁻⁶	$1.1495*10^{6}$
PEEK - 90HMF20	Minimum	4.9879*10 ⁻⁹	726.48	0	887.08
	Maximum	4.5815*10 ⁻⁶	$1.1908*10^{6}$	1.3806*10 ⁻⁶	$1.0355*10^{6}$
PEEK - 90HMF40	Minimum	2.6544*10 ⁻⁸	1248.6	0	840.22
	Maximum	2.351*10 ⁻⁵	1.2595*10 ⁶	7.0244*10 ⁻⁶	1.0939*10 ⁶

Table: 5 Comparison Analysis Data of Different Material

Conclusions

Parts made out of Victrex materials are economical to produce, and facilitate overall systems cost reductions by eliminating secondary operations for parts, such as machining, as well as facilitating reduction in part count when compared with metal parts. From the analysis it can be said that PEEK 90HMF20 is best material for the replace of Aluminium material.

References

- Udasi, P., & Kumbhare, S. Design and Analysis of Two Wheelers Wheel with the Replacement of Alluminium Alloy. International Journal of Recent Technology and Engineering (IJRTE), Volume-3 Issue-4, September 2014
- Steinberg, E. L., Rath, E., Shlaifer, A., Chechik, O., Maman, E., & Salai, M. (2013). Carbon fiber reinforced PEEK Optima—a composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. Journal of the mechanical behavior of biomedical materials, 17, 221-228.
- 3. Kurtz, S. M., & Devine, J. N. (2007). PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 28(32), 4845-4869.
- 4. SWAMY, M., & REDDY, D. S. (2016). Design and Analysis of Composite Alloy Wheel.
- Adler, D., Akbar, M., Spicher, A., Goerke, S. A., & Schmoelz, W. (2019). Biomechanical study of a novel, expandable, non-metallic and radiolucent CF/PEEK Vertebral Body Replacement (VBR). Materials, 12(17), 2732.
- Eswara Kumar, A., Naga Raju, M., Karteek, N., & Prakash, D. (2015). Static and Dynamic Analysis of Motor Cycle Wheel Designs. In Applied Mechanics and Materials (Vol. 813, pp. 915-920). Trans Tech Publications Ltd.
- GANDHARI, A. K., & SUBRAMANIAM, D. (2020). DESIGN AND ANALYSIS OF A COMPOSITE ALLOY WHEEL. Journal of Engineering Science, Vol 11, Issue 7, July 2020. Pp1149-1153
- 8. Tadesse, G. M. (2017). Modeling and analysis of car wheel. IRJET (International Research Journal of Engineering and Technology), Volume: 04 Issue: 02, Feb -2017, pp. 395- 402.
- 9. Micovic, D., Mayinger, F., Bauer, S., Roos, M., Eichberger, M., & Stawarczyk, B. (2020). Is the high-performance thermoplastic polyetheretherketone indicated as a clasp material for removable dental prostheses?. Clinical oral investigations, 1-8.

International Journal of Scientific Research and Engineering Development--- Volume 4 Issue 2, Mar- Apr 2021 Available at <u>www.ijsred.com</u>

Pawi, F. T., Daud, R., Ayu, H. M., Kurniawan, T., Tomadi, S. H., Salwani, M. S., & Shah, A. (2019, January). Design and analysis of lightweight polyetheretherketone (PEEK) front lower control arm. In AIP Conference Proceedings (Vol. 2059, No. 1, p. 020026). AIP Publishing LLC.