GROUP Q8 MEAN CORDIAL LABELING

A. Lourdusamy¹ and E. Vernonisha²

¹Department of Mathematics,St. Xavier's College (Autonomous), Palayamkottai-627002, India. ²Reg. No : 19211282092009, Research Scholar, Center: PG and Research Department of Mathematics, St. Xavier's College(Autonomous), Palayamkottai-627002,ManonmaniamSundaranar University, Abisekapatti-627012,Tamilnadu, India. ¹E-mail: lourdusamy15@gmail.com

²E-mail: nishaedwin1705@gmail.com

Abstract. Let G be a (p, q) graph and let Q_8 be a graph. Let $f:V(G) \rightarrow Q_8$ be a function. For each edge uv assign the label 1 if $\left[\frac{o(f(u)) + o(f(v))}{2}\right]$ is even or0 otherwise. f is a group Q_8 mean graph cordial labeling if $|v_f(a) - v_f(b)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$, where $v_f(a)$, $v_f(b)$ and $e_f(y)$ respectively denote thetotal number of vertices labeled with the elements a, b in Q_8 and the totalnumber of edges labeled with y(y = 0, 1). In this paper, we investigate path, comb and ladder related graphs that admit group Q_8 mean cordial labeling.

AMS Subject Classification 2010: 05C78

Keywords: Group Q8 mean cordial labeling, path, ladder.

1. Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G) respectively. We follow the basic notations and terminologies of graph theory as in Harary [2]. A labeling of a graph theory is a map that carries the graph elements to the set of numbers, usually to the set of non-negative or positive integers. For all detailedsurvey of graph labeling we refer Gallian [1]. Lourdusamyet. al introduced the concept of group S₃ cordial remainder labeling [3]. Somasundaramet. al introduced the concept of mean labeling [6]. Motivated by these concepts, in this paperwe introduced the new labeling

called group Q_8 mean cordial labeling. Here we have proved that path, comb, ladder, slanting ladder, triangular ladder, $L_n \odot K_1$ and $TL_n \odot K_1$ admit group Q_8 mean cordial labeling.

Definition 1.1. [4] Ladder graph $L_n(n \ge 2)$ is product graph $P_2 \times P_n$ with 2nvertices and 3n-2 edges.

Definition 1.2. [5] The slanting ladder SL_n is a graph obtained from L_n by addingthe edges u_iu_{i+1} , $1 \le i \le n-1$, where u_i and v_i , $1 \le i \le n$ are the vertices of L_n such that $u_1, u_2, ..., u_n$ and $v_1, v_2, ..., v_n$ are two paths of length n in the graph L_n .

Definition 1.3. [4] The corona $G_1 \odot G_2$ of two graphs $G_1(p_1, q_1)$ and $G_2(p_2, q_2)$ is defined as the graph obtained by taking one copy of G_1 and p_1 copies of G_2 and joining the ith vertices of G_1 with an edge to every vertex in the ith copy of G_2 .

2. Main Results

Definition 2.1. Let G be a (p, q) graph and let Q_8 be a quaternion group. Letf : V (G) $\rightarrow Q_8$ be a function. For each edge uv assign the label 1 if $\left[\frac{o(f(u)) + o(f(v))}{2}\right]$ is even or 0 otherwise. f is a group Q_8 mean graph cordial labeling if the difference between the total number of vertices labeled with a and b is atmost 1, where a, b are1the elements in Q_8 and the difference between the total number of edges labeled with 0 and 1 is atmost 1.

Remark 2.2. Consider the quaternion group Q_8 . Let the elements of Q_8 be $\{\pm 1, \pm i, \pm j, \pm k\}$. Now o(1) = 1, o(-1) = 2, $o(\pm i) = o(\pm j) = o(\pm k) = 4$.

Theorem 2.3. The path P_n , $n \ge 1$ are group Q_8 mean cordial graph.

Proof. Let $v_1, v_2, ..., v_n$ denote the vertices of P_n . Define a function $f : V(P_n) \rightarrow Q_8$ as follows.

$$f(v_s) = \begin{cases} i \text{ if } s \equiv 1 \pmod{8} \\ -i \text{ if } s \equiv 2 \pmod{8} \\ 1 \text{ if } s \equiv 3 \pmod{8} \\ j \text{ if } s \equiv 4 \pmod{8} \\ -j \text{ if } s \equiv 5 \pmod{8} \\ k \text{ if } s \equiv 5 \pmod{8} \\ -1 \text{ if } s \equiv 7 \pmod{8} \\ -k \text{ if } s \equiv 0 \pmod{8} \end{cases}$$

We observe that $|e_f(0) - e_f(1)| = \begin{cases} 0 & \text{if } n \text{ is odd} \\ 1 & \text{if } n \text{ is even} \end{cases}$.

Hence the path P_n is group Q_8 mean cordial graph.

Theorem 2.4. The comb graph $P_n \odot K_1$ is Q_8 mean cordial graph.

Proof. Let $V(P_n \odot K_1) = \{v_s, u_s: 1 \le s \le n\}$ and $E(P_n \odot K_1) = \{v_s v_{s+1} : 1 \le s \le n-1\} \cup \{v_s u_s: 1 \le s \le n\}$. Let $f: V(P_n \odot K_1) \rightarrow Q_8$ as follows.

$$f(v_s) = \begin{cases} i \text{ if } s \equiv 1 \pmod{4} \\ 1 \text{ if } s \equiv 2 \pmod{4} \\ -j \text{ if } s \equiv 3 \pmod{4} \\ -k \text{ if } s \equiv 0 \pmod{4} \end{cases}$$

$$f(u_s) = \begin{cases} -i \text{ if } s \equiv 1 \pmod{4} \\ j \text{ if } s \equiv 2 \pmod{4} \\ k \text{ if } s \equiv 3 \pmod{4} \\ -1 \text{ if } s \equiv 0 \pmod{4} \end{cases}$$

In this type of labeling pattern we observe that

When n is even, $e_f(0) = n$ and $e_f(0) = n-1$.

When n is odd,

$$e_f(0) = \begin{cases} n-1 & \text{if } n-1 \text{ is a divisor of } 4\\ n & \text{if } n-1 \text{ is not a divisor of } 4 \end{cases}$$

$$e_f(1) = \begin{cases} n & \text{if } n-1 \text{ is a divisor of } 4\\ n-1 & \text{if } n-1 \text{ is not a divisor of } 4 \end{cases}$$

Hence the comb is Q_8 mean cordial graph.

Theorem 2.5. The ladder graph L_n is Q_8 mean cordial graph.

Proof. Let $V(L_n) = \{v_s, u_s : 1 \le s \le n\}$ and $E(L_n) = \{v_s v_{s+1}, u_s u_{s+1} : 1 \le s \le n-1\} \cup \{v_s u_s : 1 \le s \le n\}$. Define $f : V(L_n) \rightarrow Q_8$ as follows:

$$f(v_s) = \begin{cases} i \text{ if } s \equiv 1 \pmod{4} \\ -i \text{ if } s \equiv 2 \pmod{4} \\ j \text{ if } s \equiv 3 \pmod{4} \\ -j \text{ if } s \equiv 0 \pmod{4} \end{cases}$$

$$f(u_s) = \begin{cases} 1 \text{ if } s \equiv 1 \pmod{4} \\ k \text{ if } s \equiv 2 \pmod{4} \\ -1 \text{ if } s \equiv 3 \pmod{4} \\ -k \text{ if } s \equiv 0 \pmod{4} \end{cases}$$

It is easy to verify that

$$e_f(0) = \begin{cases} n + \left\lfloor \frac{n-1}{2} \right\rfloor & \text{if n is even} \\ n + \left\lfloor \frac{n}{2} \right\rfloor & \text{if n is odd} \end{cases}$$

$$e_f(1) = \begin{cases} n + \left\lfloor \frac{n-1}{2} \right\rfloor & \text{if n is even} \\ n + \left\lfloor \frac{n}{2} \right\rfloor - 1 & \text{if n is odd} \end{cases}$$

Thus L_n is group Q_8 mean cordial graph.

Theorem 2.6. The slanting ladder SL_n is Q_8 mean cordial graph.

Proof. Let $V(SL_n) = \{v_s, u_s : 1 \le s \le n\}$ and $E(SL_n) = \{v_s v_{s+1}, u_s u_{s+1}, v_s u_{s+1} : 1 \le s \le n-1\}.$

Define $f: V(SL_n) \rightarrow Q_8$ as follows:

$$f(v_s) = \begin{cases} i \text{ if } s \equiv 1 \pmod{4} \\ 1 \text{ if } s \equiv 2 \pmod{4} \\ -i \text{ if } s \equiv 3 \pmod{4} \\ -1 \text{ if } s \equiv 0 \pmod{4} \end{cases}$$

$$f(u_s) = \begin{cases} j \text{ if } s \equiv 1 \pmod{4} \\ -j \text{ if } s \equiv 2 \pmod{4} \\ k \text{ if } s \equiv 3 \pmod{4} \\ -k \text{ if } s \equiv 0 \pmod{4} \end{cases}$$

This implies that

$$e_f(0) = \begin{cases} n + \left\lfloor \frac{n}{2} \right\rfloor - 1 & \text{if n is odd} \\ n + \left\lfloor \frac{n-1}{2} \right\rfloor - 1 & \text{if n is even} \end{cases}$$

$$e_f(1) = \begin{cases} n + \left\lfloor \frac{n}{2} \right\rfloor - 1 & \text{if n is odd} \\ n + \left\lfloor \frac{n-1}{2} \right\rfloor & \text{if n is even} \end{cases}$$

Therefore SL_n is group Q_8 mean cordial graph.

A group Q_8 mean cordial labeling of SL₇ is given in Figuer 1.

Theorem 2.7. The triangular ladder TL_n is group Q_8 mean cordial graph.

Proof. Let $V(TL_n) = \{v_s, u_s : 1 \le s \le n\}$ and $E(TL_n) = \{v_sv_{s+1}, u_su_{s+1}, v_su_{s+1} : 1 \le s \le n-1\} \cup \{v_su_s : 1 \le s \le n\}$. Define $f : V(TL_n) \to Q_8$ as follows:

$$f(v_s) = \begin{cases} i \text{ if } s \equiv 1 \pmod{4} \\ -1 \text{ if } s \equiv 2 \pmod{4} \\ -i \text{ if } s \equiv 3 \pmod{4} \\ 1 \text{ if } s \equiv 0 \pmod{4} \end{cases}$$

$$f(u_s) = \begin{cases} k \text{ if } s \equiv 1 \pmod{4} \\ -k \text{ if } s \equiv 2 \pmod{4} \\ j \text{ if } s \equiv 3 \pmod{4} \\ -j \text{ if } s \equiv 0 \pmod{4} \end{cases}$$

This this type of labeling pattern we observe that $e_f(0) = 2n-2$ and $e_f(1) = 2n-1$. Hence TL_n is group Q_8 mean cordial graph.

A group Q_8 mean cordial labeling of TL₄ is given in Figure 2.

Theorem 2.8. The graph $L_n \odot K_1$ is group Q_8 mean cordial graph.

Proof. Let $V(L_n \odot K_1) = \{v_s^1, v_s^2, v_s^3, v_s^4 : 1 \le s \le n\}$ and $E(L_n \odot K_1) = \{v_s^1 v_s^2, v_s^2 v_s^3, v_s^3 v_s^4: 1 \le s \le n\} \cup \{v_s^2 v_{s+1}^2, v_s^3 v_{s+1}^3: 1 \le s \le n-1\}$. Define $f : V(L_n \odot K_1) \rightarrow Q_8$ as follows:

$$f(v_{s}^{1}) = \begin{cases} 1 & if \ s \equiv 1 \pmod{2} \\ i & if \ s \equiv 0 \pmod{2} \end{cases}$$
$$f(v_{s}^{2}) = \begin{cases} -i & if \ s \equiv 1 \pmod{2} \\ j & if \ s \equiv 0 \pmod{2} \end{cases}$$
$$f(v_{s}^{3}) = \begin{cases} -j & if \ s \equiv 1 \pmod{2} \\ -1 & if \ s \equiv 0 \pmod{2} \end{cases}$$
$$f(v_{s}^{4}) = \begin{cases} k & if \ s \equiv 1 \pmod{2} \\ -k & if \ s \equiv 0 \pmod{2} \end{cases}$$

This implies that

International Conference on New Scientific Creations in Engineering and Technology (ICNSCET21)

$$e_f(0) = \begin{cases} 2n + \left\lfloor \frac{n-1}{2} \right\rfloor & \text{if n is even} \\ 2n + \left\lfloor \frac{n}{2} \right\rfloor - 1 & \text{if n is odd} \end{cases}$$

$$e_f(1) = \begin{cases} 2n + \left\lfloor \frac{n-1}{2} \right\rfloor & \text{if n is even} \\ 2n + \left\lfloor \frac{n}{2} \right\rfloor & \text{if n is odd} \end{cases}$$

Therefore $L_n \bigcirc K_1$ is group Q_8 mean cordial graph.

A group Q_8 mean cordial labeling of $L_3 \odot K_1$ is given in Figure 3.

Theorem 2.9. The graph $TL_n \odot K_1$ is group Q_8 mean cordial graph.

Proof. Let $V(TL_n \odot K_1) = \{u_s^1, u_s^2, u_s^3, u_s^4 : 1 \le s \le n\}$ and $E(TL_n \odot K_1) = \{u_s^1 u_s^2, u_s^2 u_s^3, u_s^3 u_s^4 : 1 \le s \le n\} \cup \{u_s^2 u_{s+1}^2, u_s^3 u_{s+1}^3, u_s^2 u_{s+1}^3 : 1 \le s \le n-1\}.$ Define $f: V(TL_n \odot K_1) \to Q_8$ as follows:

$$f(u_s^1) = \begin{cases} 1 & if \ s \equiv 1 \pmod{2} \\ -j & if \ s \equiv 0 \pmod{2} \end{cases}$$
$$f(u_s^2) = \begin{cases} i & if \ s \equiv 1 \pmod{2} \\ -1 & if \ s \equiv 0 \pmod{2} \end{cases}$$

$$f(u_s^3) = \begin{cases} -i & \text{if } s \equiv 1 \pmod{2} \\ k & \text{if } s \equiv 0 \pmod{2} \end{cases}$$

$$f(u_s^4) = \begin{cases} j & \text{if } s \equiv 1 \pmod{2} \\ -k & \text{if } s \equiv 0 \pmod{2} \end{cases}$$

This implies that $e_f(0) = 3n-2$ and $e_f(1) = 3n-1$.

Thus the graph $TL_n \bigcirc K_1$ is group Q_8 mean cordial graph.

References

[1] J. A. Gallian, 'A Dyamic Survey of Graph Labeling', The Electronic J. Combin., 17 (2015)

#DS6.

[2] F. Harary, Graph Theory, Addison-wesley, Reading, Mass (1972).

[3] A. Lourdusamy, S. Jenifer Wency and F. Patrick, 'Group S_3 cordial remainder labeling', InternationalJournal of Recent Technology and Engineering, 8(4), (2019), 8276-8281.

[4] A. Lourdusamy, S. Jenifer Wency and F. Patrick, 'Group S_3 cordial remainder labeling of subdivision of graphs', Journal of Applied Mathematics & Informatics, 38(3-4) (2020), 221-238.

[5] A. Lourdusamy and F. Patrick, 'Sum divisor cordial labeling for star and ladder related graphs', Proyecciones Journal of Mathematics, 35(4), (2016), 437-455.

[6] S. Somasundaram and R. Ponraj, 'Mean labeling of graphs', National Academy Science Letters, 26, (2003), 210-213.