GROUP Q_{8} MEAN CORDIAL LABELING

A. Lourdusamy ${ }^{1}$ and E. Vernonisha ${ }^{2}$
${ }^{1}$ Department of Mathematics,St. Xavier's College (Autonomous), Palayamkottai-627002, India.
${ }^{2}$ Reg. No : 19211282092009, Research Scholar,
Center: PG and Research Department of Mathematics, St. Xavier's
College(Autonomous), Palayamkottai-627002,ManonmaniamSundaranar University, Abisekapatti-627012,Tamilnadu, India.
${ }^{1}$ E-mail: lourdusamy $15 @$ gmail.com
${ }^{2}$ E-mail: nishaedwin1705@gmail.com

Abstract

Let G be a (p, q) graph and let Q_{8} be a graph. Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow \mathrm{Q}_{8}$ be a function. For each edge uv assign the label 1 if $\left\lceil\frac{0(f(\mathrm{u}))+o(f(\mathrm{v}))}{2}\right\rceil$ is even or0 otherwise. f is a group Q_{8} mean graph cordial labeling if $\left|\mathrm{v}_{\mathrm{f}}(\mathrm{a})-\mathrm{v}_{\mathrm{f}}(\mathrm{b})\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$, where $v_{f}(a), v_{f}(b)$ and $e_{f}(y)$ respectively denote thetotal number of vertices labeled with the elements a, b in Q_{8} and the totalnumber of edges labeled with $\mathrm{y}(\mathrm{y}=0,1)$. In this paper, we investigate path,comb and ladder related graphs that admit group Q_{8} mean cordial labeling.

AMS Subject Classification 2010: 05C78
Keywords: Group Q8 mean cordial labeling, path, ladder.

1. Introduction

Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$ respectively.We follow the basic notations and terminologies of graph theory as in Harary [2].A labeling of a graph theory is a map that carries the graph elements to the setof numbers, usually to the set of non-negative or positive integers. For all detailedsurvey of graph labeling we refer Gallian [1]. Lourdusamyet. al introduced theconcept of group S_{3} cordial remainder labeling [3]. Somasundaramet. al introduced the concept of mean labeling [6]. Motivated by these concepts, in this paperwe introduced the new labeling
called group Q_{8} mean cordial labeling. Here wehave proved that path, comb, ladder, slanting ladder, triangular ladder, $\mathrm{L}_{\mathrm{n}} \odot \mathrm{K}_{1}$ and $\mathrm{TL}_{\mathrm{n}} \odot \mathrm{K}_{1}$ admit group Q_{8} mean cordial labeling.

Definition 1.1. [4] Ladder graph $\mathrm{L}_{\mathrm{n}}(\mathrm{n} \geq 2)$ is product graph $\mathrm{P}_{2} \times \mathrm{P}_{\mathrm{n}}$ with 2 nvertices and $3 n-2$ edges.

Definition 1.2. [5] The slanting ladder SL_{n} is a graph obtained from L_{n} by addingthe edges $u_{i} u_{i+1}, 1 \leq i \leq n-1$, where u_{i} and $v_{i}, 1 \leq i \leq n$ are the vertices of L_{n} such that $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ are two paths of length n in the graphL ${ }_{n}$.

Definition 1.3. [4] The corona $G_{1} \odot G_{2}$ of two graphs $G_{1}\left(p_{1}, q_{1}\right)$ and $G_{2}\left(p_{2}\right.$, q_{2})is defined as the graph obtained by taking one copy of G_{1} and p_{1} copies of G_{2} andjoining the $i^{\text {th }}$ vertices of G_{1} with an edge to every vertex in the $i^{\text {th }}$ copy of G_{2}.

2. Main Results

Definition 2.1. Let G be $a(p, q)$ graph and let Q_{8} be a quaternion group. Letf : V (G) $\rightarrow \mathrm{Q}_{8}$ be a function. For each edge uv assign the label 1 if $\left\lceil\frac{\mathrm{o}(\mathrm{f}(\mathrm{u}))+\mathrm{o}(\mathrm{f}(\mathrm{v}))}{2}\right\rceil$ is even or 0 otherwise. f is a group Q_{8} mean graph cordial labeling if the differencebetween the total number of vertices labeled with a and b is atmost 1 , where a, b are 1 the elements in Q_{8} and the difference between the total number of edges labeled with 0 and 1 is atmost 1 .

Remark 2.2. Consider the quaternion group Q_{8}. Let the elements of Q_{8} be $\{ \pm 1, \pm \mathrm{i}, \pm \mathrm{j}, \pm \mathrm{k}\}$. Now $\mathrm{o}(1)=1, \mathrm{o}(-1)=2, \mathrm{o}(\pm \mathrm{i})=\mathrm{o}(\pm \mathrm{j})=\mathrm{o}(\pm \mathrm{k})=4$.

Theorem 2.3. The path $\mathrm{P}_{\mathrm{n}}, \mathrm{n} \geq 1$ are group Q_{8} mean cordial graph.

Proof. Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ denote the vertices of P_{n}. Define a function $\mathrm{f}: \mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right) \rightarrow$ Q_{8} as follows.

$$
\mathrm{f}\left(v_{s}\right)=\left\{\begin{aligned}
\mathrm{i} \text { if } s & \equiv 1(\bmod 8) \\
-\mathrm{i} \text { if } s & \equiv 2(\bmod 8) \\
1 \text { if } s & \equiv 3(\bmod 8) \\
\mathrm{j} \text { if } \mathrm{s} & \equiv 4(\bmod 8) \\
-\mathrm{j} \text { if } s & \equiv 5(\bmod 8) \\
\mathrm{k} \text { if } \mathrm{s} & \equiv 6(\bmod 8) \\
-1 \text { if } s & \equiv 7(\bmod 8) \\
-\mathrm{k} \text { if } s & \equiv 0(\bmod 8)
\end{aligned}\right.
$$

We observe thate $e_{f}(0)-e_{f}(1) \left\lvert\,=\left\{\begin{array}{l}0 \text { if } n \text { is odd } \\ 1 \text { if } n \text { is even }\end{array}\right.$. \right.
Hence the path P_{n} is group Q_{8} mean cordial graph.

Theorem 2.4. The comb graph $P_{n} \odot K_{1}$ is Q_{8} mean cordial graph.

Proof. Let $\mathrm{V}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)=\left\{\mathrm{v}_{\mathrm{s}}, \mathrm{u}_{\mathrm{s}}: 1 \leq \mathrm{s} \leq \mathrm{n}\right\}$ and $\mathrm{E}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)=\left\{\mathrm{v}_{\mathrm{s}} \mathrm{v}_{\mathrm{s}+1}: 1 \leq \mathrm{s} \leq \mathrm{n}-\right.$ $1\} \cup\left\{\mathrm{v}_{\mathrm{s}} \mathrm{u}_{\mathrm{s}}: 1 \leq \mathrm{s} \leq \mathrm{n}\right\}$. Let $\mathrm{f}: \mathrm{V}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \rightarrow \mathrm{Q}_{8}$ as follows.

$$
\begin{aligned}
& \mathrm{f}\left(v_{s}\right)=\left\{\begin{array}{r}
\mathrm{i} \text { if } \mathrm{s} \equiv 1(\bmod 4) \\
1 \text { if } s \equiv 2(\bmod 4) \\
-\mathrm{j} \text { if } \mathrm{s} \equiv 3(\bmod 4) \\
-\mathrm{k} \text { if } \mathrm{s} \equiv 0(\bmod 4)
\end{array}\right. \\
& \mathrm{f}\left(u_{s}\right)=\left\{\begin{array}{r}
-\mathrm{i} \text { if } \mathrm{s} \equiv 1(\bmod 4) \\
\mathrm{j} \text { if } \mathrm{s} \equiv 2(\bmod 4) \\
\mathrm{k} \text { if } \mathrm{m} \equiv 3(\bmod 4) \\
-1 \text { if } s \equiv 0(\bmod 4)
\end{array}\right.
\end{aligned}
$$

In this type of labeling pattern we observe that
When n is even, $\mathrm{e}_{\mathrm{f}}(0)=\mathrm{n}$ and $\mathrm{e}_{\mathrm{f}}(0)=\mathrm{n}-1$.
When n is odd,

$$
\begin{gathered}
e_{f}(0)=\left\{\begin{array}{cc}
n-1 & \text { if } n-1 \text { is a divisor of } 4 \\
n & \text { if } n-1 \text { is not a divisor of } 4
\end{array}\right. \\
e_{f}(1)=\left\{\begin{array}{cc}
n & \text { if } n-1 \text { is a divisor of } 4 \\
n-1 & \text { if } n-1 \text { is not a divisor of } 4
\end{array}\right.
\end{gathered}
$$

Hence the comb is Q_{8} mean cordial graph.

Theorem 2.5. The ladder graph L_{n} is Q_{8} mean cordial graph.

Proof. Let $V\left(L_{n}\right)=\left\{v_{s}, u_{s}: 1 \leq s \leq n\right\}$ and $E\left(L_{n}\right)=\left\{v_{s} v_{s+1}, u_{s} u_{s+1}: 1 \leq s \leq n-\right.$ $1\} \cup\left\{\mathrm{v}_{\mathrm{s}} \mathrm{u}_{\mathrm{s}}: 1 \leq \mathrm{s} \leq \mathrm{n}\right\}$. Define $\mathrm{f}: \mathrm{V}\left(\mathrm{L}_{\mathrm{n}}\right) \rightarrow \mathrm{Q}_{8}$ as follows:

$$
\begin{aligned}
& \mathrm{f}\left(v_{s}\right)=\left\{\begin{array}{r}
\mathrm{i} \text { if } \mathrm{s} \equiv 1(\bmod 4) \\
-\mathrm{if} \mathrm{~s} \equiv 2(\bmod 4) \\
\mathrm{j} \text { if } \mathrm{s} \\
-\mathrm{j} \text { if } \mathrm{F}(\bmod 4)(\bmod 4)
\end{array}\right. \\
& \mathrm{f}\left(u_{s}\right)=\left\{\begin{array}{r}
1 \text { if } s \equiv 1(\bmod 4) \\
\mathrm{k} \text { if } \mathrm{s} \equiv 2(\bmod 4) \\
-1 \text { if } s \equiv 3(\bmod 4) \\
-\mathrm{k} \text { if } \mathrm{s} \equiv 0(\bmod 4)
\end{array}\right.
\end{aligned}
$$

It is easy to verify that

$$
\begin{aligned}
& e_{f}(0)=\left\{\begin{array}{c}
\mathrm{n}+\left\lfloor\frac{n-1}{2}\right\rfloor \text { if } \mathrm{n} \text { is even } \\
\mathrm{n}+\left\lfloor\frac{n}{2}\right\rfloor \text { if } \mathrm{n} \text { is odd }
\end{array}\right. \\
& e_{f}(1)=\left\{\begin{array}{l}
\mathrm{n}+\left\lfloor\frac{n-1}{2}\right\rfloor \text { if } \mathrm{n} \text { is even } \\
\mathrm{n}+\left\lfloor\frac{n}{2}\right\rfloor-1 \text { if } \mathrm{n} \text { is odd }
\end{array}\right.
\end{aligned}
$$

Thus L_{n} is group Q_{8} mean cordial graph.

Theorem 2.6. The slanting ladder SL_{n} is Q_{8} mean cordial graph.

Proof. Let $V\left(\mathrm{SL}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{\mathrm{s}}, \mathrm{u}_{\mathrm{s}}: 1 \leq \mathrm{s} \leq \mathrm{n}\right\}$ and $\mathrm{E}\left(\mathrm{SL}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{\mathrm{s}} \mathrm{v}_{\mathrm{s}+1}, \mathrm{u}_{\mathrm{s}} \mathrm{u}_{\mathrm{s}+1}, \mathrm{v}_{\mathrm{s}} \mathrm{u}_{\mathrm{s}+1}: 1 \leq\right.$ $\mathrm{s} \leq \mathrm{n}-1\}$.

Define $\mathrm{f}: \mathrm{V}\left(\mathrm{SL}_{\mathrm{n}}\right) \rightarrow \mathrm{Q}_{8}$ as follows:

$$
\mathrm{f}\left(v_{s}\right)=\left\{\begin{array}{r}
\text { i if } \mathrm{s} \equiv 1(\bmod 4) \\
1 \text { if } s \equiv 2(\bmod 4) \\
-\mathrm{i} \text { if } \mathrm{s} \equiv 3(\bmod 4) \\
-1 \text { if } s \equiv 0(\bmod 4)
\end{array}\right.
$$

$$
\mathrm{f}\left(u_{s}\right)=\left\{\begin{array}{r}
\mathrm{j} \text { if } \mathrm{s} \equiv 1(\bmod 4) \\
-\mathrm{j} \text { if } \mathrm{m} \equiv 2(\bmod 4) \\
\mathrm{k} \text { if } \mathrm{s} \equiv 3(\bmod 4) \\
-\mathrm{k} \text { if } \mathrm{s} \equiv 0(\bmod 4)
\end{array}\right.
$$

This implies that

$$
\begin{gathered}
e_{f}(0)=\left\{\begin{array}{c}
\mathrm{n}+\left\lfloor\frac{n}{2}\right\rfloor-1 \text { if } \mathrm{n} \text { is odd } \\
\mathrm{n}+\left\lfloor\frac{n-1}{2}\right\rfloor-1 \text { if } \mathrm{n} \text { is even }
\end{array}\right. \\
e_{f}(1)=\left\{\begin{array}{c}
\mathrm{n}+\left\lfloor\frac{n}{2}\right\rfloor-1 \text { if } \mathrm{n} \text { is odd } \\
\mathrm{n}+\left\lfloor\frac{n-1}{2}\right\rfloor \text { if } \mathrm{n} \text { is even }
\end{array}\right.
\end{gathered}
$$

Therefore SL_{n} is group Q_{8} mean cordial graph.

A group Q_{8} mean cordial labeling of SL_{7} is given in Figuer 1.

Figure 1

Theorem 2.7. The triangular ladder TL_{n} is group Q_{8} mean cordial graph.

Proof. Let $V\left(\mathrm{TL}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{\mathrm{s}}, \mathrm{u}_{\mathrm{s}}: 1 \leq \mathrm{s} \leq \mathrm{n}\right\}$ and $\mathrm{E}\left(\mathrm{TL}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{\mathrm{s}} \mathrm{v}_{\mathrm{s}+1}, \mathrm{u}_{\mathrm{s}} \mathrm{u}_{\mathrm{s}+1}, \mathrm{v}_{\mathrm{s}} \mathrm{u}_{\mathrm{s}+1}: 1\right.$ $\leq \mathrm{s} \leq \mathrm{n}-1\} \cup\left\{\mathrm{v}_{\mathrm{s}} \mathrm{u}_{\mathrm{s}}: 1 \leq \mathrm{s} \leq \mathrm{n}\right\}$. Define $\mathrm{f}: \mathrm{V}\left(\mathrm{TL}_{\mathrm{n}}\right) \rightarrow \mathrm{Q}_{8}$ as follows:

$$
\mathrm{f}\left(v_{s}\right)=\left\{\begin{array}{r}
\mathrm{i} \text { if } \mathrm{s} \equiv 1(\bmod 4) \\
-1 \text { if } s \equiv 2(\bmod 4) \\
-\mathrm{i} \text { if } \mathrm{s} \equiv 3(\bmod 4) \\
1 \text { if } s \equiv 0(\bmod 4)
\end{array}\right.
$$

$$
\mathrm{f}\left(u_{s}\right)=\left\{\begin{array}{r}
\mathrm{k} \text { if } s \equiv 1(\bmod 4) \\
-\mathrm{k} \text { if } \mathrm{s} \equiv 2(\bmod 4) \\
\mathrm{j} \text { if } \mathrm{s} \equiv 3(\bmod 4) \\
-\mathrm{j} \text { if } \mathrm{s} \equiv 0(\bmod 4)
\end{array}\right.
$$

This this type of labeling pattern we observe thate ${ }_{\mathrm{f}}(0)=2 \mathrm{n}-2$ and $\mathrm{e}_{\mathrm{f}}(1)=2 \mathrm{n}-1$.
Hence TL_{n} is group Q_{8} mean cordial graph.

A groupQ Q_{8} mean cordial labeling of TL_{4} is given in Figure 2.

Figure 2

Theorem 2.8. The graph $L_{n} \odot K_{1}$ is group Q_{8} mean cordial graph.

Proof. Let $\mathrm{V}\left(\mathrm{L}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)=\left\{v_{s}^{1}, v_{s}^{2}, v_{s}^{3}, v_{s}^{4}: 1 \leq \mathrm{s} \leq \mathrm{n}\right\}$ and $\mathrm{E}\left(\mathrm{L}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)=$ $\left\{v_{s}^{1} v_{s}^{2}, v_{s}^{2} v_{s}^{3}, v_{s}^{3} v_{s}^{4}: 1 \leq \mathrm{s} \leq \mathrm{n}\right\} \cup\left\{v_{s}^{2} v_{s+1}^{2}, v_{s}^{3} v_{s+1}^{3}: 1 \leq \mathrm{s} \leq \mathrm{n}-1\right\}$. Define $\mathrm{f}:$ $\mathrm{V}\left(\mathrm{L}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \rightarrow \mathrm{Q}_{8}$ as follows:

$$
\begin{aligned}
& f\left(v_{s}^{1}\right)= \begin{cases}1 & \text { if } s \equiv 1(\bmod 2) \\
i & \text { if } s \equiv 0(\bmod 2)\end{cases} \\
& f\left(v_{s}^{2}\right)=\left\{\begin{aligned}
-i & \text { if } s \equiv 1(\bmod 2) \\
j & \text { if } s \equiv 0(\bmod 2)
\end{aligned}\right. \\
& f\left(v_{s}^{3}\right)= \begin{cases}-j & \text { if } s \equiv 1(\bmod 2) \\
-1 & \text { if } s \equiv 0(\bmod 2)\end{cases} \\
& f\left(v_{s}^{4}\right)= \begin{cases}k & \text { if } s \equiv 1(\bmod 2) \\
-k & \text { if } s \equiv 0(\bmod 2)\end{cases}
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& e_{f}(0)=\left\{\begin{array}{l}
2 \mathrm{n}+\left\lfloor\frac{n-1}{2}\right\rfloor \text { if } \mathrm{n} \text { is even } \\
2 \mathrm{n}+\left\lfloor\frac{n}{2}\right\rfloor-1 \text { if } \mathrm{n} \text { is odd }
\end{array}\right. \\
& e_{f}(1)=\left\{\begin{array}{c}
2 \mathrm{n}+\left\lfloor\frac{n-1}{2}\right\rfloor \text { if } \mathrm{n} \text { is even } \\
2 \mathrm{n}+\left\lfloor\frac{n}{2}\right\rfloor \quad \text { if } \mathrm{n} \text { is odd }
\end{array}\right.
\end{aligned}
$$

Therefore $\mathrm{L}_{\mathrm{n}} \odot \mathrm{K}_{1}$ is group Q_{8} mean cordial graph.

A group Q_{8} mean cordial labeling of $\mathrm{L}_{3} \odot \mathrm{~K}_{1}$ is given in Figure 3 .

Figure 3

Theorem 2.9. The graph $\mathrm{TL}_{\mathrm{n}} \odot \mathrm{K}_{1}$ is group Q_{8} mean cordial graph.

Proof. Let $\mathrm{V}\left(\mathrm{TL}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)=\left\{u_{s}^{1}, u_{s}^{2}, u_{s}^{3}, u_{s}^{4}: 1 \leq \mathrm{s} \leq \mathrm{n}\right\}$ and $\mathrm{E}\left(\mathrm{TL}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)$
$=\left\{u_{s}^{1} u_{s}^{2}, u_{s}^{2} u_{s}^{3}, u_{s}^{3} u_{s}^{4}: 1 \leq \mathrm{s} \leq \mathrm{n}\right\} \cup\left\{u_{s}^{2} u_{s+1}^{2}, u_{s}^{3} u_{s+1}^{3}, u_{s}^{2} u_{s+1}^{3}: 1 \leq \mathrm{s} \leq \mathrm{n}-1\right\}$.
Define $\mathrm{f}: \mathrm{V}\left(\mathrm{TL}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \rightarrow \mathrm{Q}_{8}$ as follows:

$$
\begin{aligned}
& f\left(u_{s}^{1}\right)=\left\{\begin{aligned}
1 & \text { if } s \equiv 1(\bmod 2) \\
-j & \text { if } s \equiv 0(\bmod 2)
\end{aligned}\right. \\
& f\left(u_{s}^{2}\right)=\left\{\begin{aligned}
i & \text { if } s \equiv 1(\bmod 2) \\
-1 & \text { if } s \equiv 0(\bmod 2)
\end{aligned}\right.
\end{aligned}
$$

$$
\begin{aligned}
& f\left(u_{s}^{3}\right)= \begin{cases}-i & \text { if } s \equiv 1(\bmod 2) \\
k & \text { if } s \equiv 0(\bmod 2)\end{cases} \\
& f\left(u_{s}^{4}\right)= \begin{cases}j & \text { if } s \equiv 1(\bmod 2) \\
-k & \text { if } s \equiv 0(\bmod 2)\end{cases}
\end{aligned}
$$

This implies thate $\mathrm{f}_{\mathrm{f}}(0)=3 \mathrm{n}-2$ and $\mathrm{e}_{\mathrm{f}}(1)=3 \mathrm{n}-1$.
Thus the graph $\mathrm{TL}_{\mathrm{n}} \odot \mathrm{K}_{1}$ is group Q_{8} mean cordial graph.

References

[1] J. A. Gallian, 'A Dyamic Survey of Graph Labeling', The Electronic J. Combin., 17 (2015)
\#DS6.
[2] F. Harary, Graph Theory, Addison-wesley, Reading, Mass (1972).
[3] A. Lourdusamy, S. Jenifer Wency and F. Patrick, 'Group S ${ }_{3}$ cordial remainder labeling', InternationalJournal of Recent Technology and Engineering, 8(4), (2019), 8276-8281.
[4] A. Lourdusamy, S. Jenifer Wency and F. Patrick, 'Group S3 cordial remainder labeling ofsubdivision of graphs', Journal of Applied Mathematics \& Informatics, 38(3-4) (2020), 221-238.
[5] A. Lourdusamy and F. Patrick, 'Sum divisor cordial labeling for star and ladder related graphs', Proyecciones Journal of Mathematics, 35(4), (2016), 437-455.
[6] S. Somasundaram and R. Ponraj, 'Mean labeling of graphs', National Academy Science Letters, 26, (2003), 210-213.

