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Abstract -Sentiment classification is the concept that can be applied in various applications, such 

as in finding the sentiment of the product reviews, sentiment of the tweets etc. A Deep Learning 

based model for predicting the sentiment of the review will be designed. The sentiment classification 

can either be considered as a binary classification problem or multi class classification problem. A 

product review can be anywhere between either positive or negative. When most of the existing 

works consider it as a binary classification problem, the objective of the work is to create a multi 

class deep learning model. Before the implementation of the deep learning model conventional 

machine learning models will be implemented for comparison.  

Keywords – Classification, deep learning, sentiment analysis, Machine Learning. 

I. INTRODUCTION 

1.1 Sentiment Analysis 

Sentiment analysis is the process of using natural language processing, text analysis, and 

statistics to analyze customer sentiment. The best businesses understand the sentiment of their 

customers—what people are saying, how they’re saying it, and what they mean. Customer sentiment 

can be found in tweets, comments, reviews, or other places where people mention your 

brand. Sentiment Analysis is the domain of understanding these emotions with software, and it’s a 

must-understand for developers and business leaders in a modern workplace. 

1.2 Classification  

The classification is the process of assigning a label to the input and it is depicted in the 

following figure 1.1. 

 

 

 

 
Figure 1.1 Classification Problem 

1.3 Problem Statement 
Given a set of tweets, the model should be capable of classifying it to positive tweet or 

negative tweet. It is considered as the classification problem.  The problem statement is depicted in 

the following figure 1.2.  

 

 
 

 

Figure 1.2 Problem Depiction 

1.4 Models Employed 
The models that are employed in this work are as follows 

� Recurrent Neural Network 

� Decision Tree 

� Naive Bayes 
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All these models required pre-processing. The pre-processing required to be done for sentimental 

analysis includes functionalities from natural language processing. 

1.5 Dataset 
The dataset contains 4000 data out of which 2000 data belongs to positive class and 2000 

data belong to negative class. 

1.6 Objective 
To design three different models for sentiment analysis and compare the results obtained 

from them. 

II. SYSTEM DESIGN 

 

2.1 Existing System 

Most of the existing works consider this as the binary classification problem. This could be 

suitable for scenarios such as tweets but not for product reviews. 

2.2 Proposed System 

The following classifiers are implemented for sentiment analysis and the results are compared 

� Multinomial Naive Bayes 

� Decision tree 

� Recurrent Neural Networks  

The reasons for choosing these classifiers are as follows. From the Literature it has been 

observed that decision tree performs well than the other models so it is considered for comparison. 

Multinomial naive bayes classifier that has been specially designed for sentiment analysis and 

recurrent neural network is a kind of deep learning model with memory. All the three models are 

implemented and the results are compared. 

2.3 System Architecture 

The following figure 2.1 represents the system architecture of the recurrent neural network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.1 System Architecture-LSTM 
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The following figure 2.2 represents the architecture for the classifiers multinomial naive 

bayes and the decision tree models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2 System Architecture – Naive Bayes and Decision Tree 

The results obtained from the three models are compared. 

2.4 Modules 
The modules involved in the project are 

� Pre-processing 

� Building the recurrent neural network 

2.4.1 Pre-Processing 

The first process in pre-processing is tokenizing. This class allows to vectorize a text corpus, 

by turning each text into either a sequence of integers (each integer being the index of a token in a 

dictionary) or into a vector where the coefficient for each token could be binary, based on word 

count, based on tf-idf.  

With this, all the punctuations are removed and the texts are converted into space separated 

words. These sequences are then split into token of lists. Indexing or vectorization is applied then. 

The text are converted into numbers .the next process is to use padding process. Padding is done in 

order to ensure that zeroes are appended to all the sequences to ensure they are if same length.  

2.4.2 Building The Recurrent Neural Network 

The steps involved in building the recurrent neural network is  

� Initializing the network 

� Adding the Required LSTM Layer 

� Adding the output layer 

2.4.2.1 Initializing The Network 
Initializing a network is nothing but deciding upon the model to be used with the keras. The 

model used in the system is the sequential model. It can be represented with a stack of layers. The 

layers can be LSTM layers or dropouts depending on the requirement. It is followed by embedding 

the various layers. Keras offers an Embedding layer that can be used for neural networks on text 

data. It requires that the input data be integer encoded, so that each word is represented by a unique 

integer. This data preparation step can be performed using the tokenizer API also provided with 

Keras. The Embedding layer is initialized with random weights and will learn an embedding for all 

of the words in the training dataset. 
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2.4.2.2 Adding the Required LSTM Layer 

LSTM layer refers to the long short term memory layer which is used for avoiding the 

vanishing gradient problem that occurs in the recurrent neural network. Before explaining the LSTM, 

the problem of vanishing gradient descent is discussed. 

Gradient descent algorithm is the one that is used for identifying the minimum cost function 

in the machine learning model. The difference between the value predicted and the actual value is 

calculated and the error is calculated and propagated back to the network for adjusting the weights.  

 
Figure 2.3 Vanishing Gradient Problem 

The vanishing gradient problem can be solved by the following methods. 

� Weights should be initialized in such a way that the probability of gradient vanishing is 

minimized. 

� To use the network with echo state 

� To introduce LSTM layers 

The approach that has been followed in the proposed model is addition of LSTM layers.  The 

operation of the LSTM layer is given below. 

 
 

Figure 2.4 LSTM Layer 

� The new value received and the value received from the previous node is obtained. 

� The values are combined and given as input to the sigmoid function, with which the decision 

is made about the forget value. The decision can open; open to some extent or close. 

� The same set of values is further passed through two functions, tanh and the sigmoid 

function. The former is used for deciding on the parameters which can be passed through the 

memory pipeline and the later decided whether the value will be send to the memory pipeline 

and if so, to what extent. 

� When the memory is flowing through the pipeline, the memory will not change if we have 

forget valve opened and memory valve closed. The memory will be updated completely in 

the other case. 

� This would help in deciding the output of the module. 
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2.4.2.3 Adding the Output Layer 

The output layer is the dense layer with 2 dimensional outputs and the softmax layer. Once the 

model is designed it can be tested with the validation data and the accuracy is obtained.  

2.5 Multi Nomial Naive Bayes Algorithm 

Modules  

� Pre-processing 

� Normalization 

� Count vectorization 

� TF-IDF Transformation 

� Classification with naive bayes 

2.5.1 Pre-Processing 

Pre-processing includes the following sub processes 

� Removal of Hash tags and punctuations 

� Removal of stopwords and Sentiment Classification 

Twitter comments not only contain English words, it also contains punctuations and hash 

tags. Before sentiment analysis is made, all these should be removed because it does not contribute 

for sentiment analysis. This is done with a module called as TextBlob. With the help of this, the 

words are separated and these symbols are removed. Removal of stop words is also an integral part 

of the text pre-processing. Stopwords includes words like a, an, in, the etc. 

2.5.2 Normalization 

  Text normalization is the process of transforming a text into a canonical (standard) form. For 

example, the word “gooood” and “gud” can be transformed to “good”, its canonical form. Another 

example is mapping of near identical words such as “stopwords”, “stop-words” and “stop words” to 

just “stopwords”. 

Text normalization is important for noisy texts such as social media comments, text messages 

and comments to blog posts where abbreviations, misspellings and use of out-of-vocabulary words 

(oov) are prevalent.  

2.5.3 Count Vectorization  

With the help of the CountVectorizer, a bag of words is created. Bag of words is created first 

by selecting the unique words from the set of words available and a table is formed as shown below. 

There are n comments 

Set of reviews={r0,r2,........rn} 

Set of unique words in all columns={uw1,uw2,.........uwn} 

A table is formed, where the rows denote the set of comments and columns denote the set of unique 

words. 

 Uw1 Uw2  Uwn 

comment 0     

comment  1     

. 

. 

  .. .  .  

    

comment n     

 

Each cell of the Table is filled with either 0 or 1. For example, the cell {Comment 0, Uw1} is filled 

with 1 if that particular word Uw1 occurs in comment 0, else the cell is filled with 0. 

2.5.4 TF-IDF Transformation 
In order to re-weight the count features into floating point values suitable for usage by a 

classifier it is very common to use the tf–idf transform. Tf means term frequency while tf–idf 

means term-frequency time’s inverse document-frequency:  
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tf-idf(t,d)=tf(t,d) X idf(t) 

where 

idf(t) = log ���
����(
) +1 

Where n is the total number of documents in the document set, and df(t) is the number of documents 

in the document set that contain term t. The resulting tf-idf vectors are then normalized by the 

Euclidean normalization. 

2.5.5 Multi Naive Bayes Algorithm 

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’ 

theorem with the “naive” assumption of conditional independence between every pair of features 

given the value of the class variable. Bayes’ theorem states the following relationship, given class 

variable y and dependent feature vector x1 through xn: 

�( ∣ ��, … , ��) =
�()�(��, …�� ∣ )

�(��, … , ��)  

Using the naive conditional independence assumption that 

�(��|, ��, … , ����, ����, … , ��) = �(��|), 
for all i, this relationship is simplified to 

�( ∣ ��, … , ��) =
�()� �(�� ∣ )�

���
�(��, … , ��)  

Since �(��, … , ��)is constant given the input, we can use the following classification rule: 

�( ∣ ��, … , ��) ∝ �()��(�� ∣ )
�

���
⇓

^ = arg	max! �()��(�� ∣ )
�

���
,

 

and we can use Maximum A Posteriori (MAP) estimation to estimate �()and �(�� ∣ )); the former 

is then the relative frequency of class y in the training set. 

Multinomial naive bayes algorithm implements the naive Bayes algorithm for multinomially 

distributed data, and is one of the two classic naive Bayes variants used in text classification (where 

the data are typically represented as word vector counts, although tf-idf vectors are also known to 

work well in practice). The distribution is parameterized by vectors θy=(θy1,…,θyn) for each class y, 

where n is the number of features (in text classification, the size of the vocabulary) and θyi is the 

probability P(xi∣y) of feature i appearing in a sample belonging to class y. 

The parameters θy is estimated by a smoothed version of maximum likelihood, i.e. relative 

frequency counting: 

"^!� =
#!� + %
#! + %& 

where #!� = ∑ ��(∈*  is the number of times feature i appears in a sample of class y in the training 

set T, and #! = + #!�
�
��� is the total count of all features for class y. The smoothing 

priors α≥0 accounts for features not present in the learning samples and prevents zero probabilities in 

further computations. Setting α=1 is called Laplace smoothing, while α<1 is called Lidstone 

smoothing.  The results obtained are discussed in the next chapter. 

 

 

III. EXPERIMENTAL RESULTS 

 
The parameters that are considered for evaluation are as follows. 

� Precision(P) 
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� Recall(R) 

� F1-score(F1) 

Precision, recall and F1-Score are calculated with the following parameters 

True Positive rate  

 True Positive Rate (TPR) = 
,-

,-�.- (1) 

Where TP =True Positive, FP =False Positive 

False Positive rate 

False Positive Rate (FPR) =
/0

/0�*1        (2) 

Where TN=True Negative 

Precision 

Precision = 
*0

*0�/1                (3) 

Where FN is False Negative 

Recall 

   Recall = 
*0

*0�/0                     (4) 

F-Measure 

F-Measure = 2 × 0456�7�8�×956:;;
0456�7�8��956:;;           (5) 

andaccuracy. 

Accuracy of the System is calculated with the following formula 

Accuracy= (TP+TN)/ (TN+FP+FN+TP) 

The False positive, False Negative, True Positive and True Negative are as follows 

� True Negative refers to the number of negative reviews that has been identified as negative 

� False Positive refers to the number of negative reviews that has been identified as positive 

� False Negative refers to the number of positive reviews that has been identified as negative 

� True Positive refers to the number of positive reviews that has been identified as positive 

The results obtained with naive bayes classifier are as follows for training and testing phase.   
Table 3.1 Classification Report – Naive Bayes – Training and Testing 

 Precision Recall F1-score 

0 0.89 0.88 0.88 

1 0.88 0.89 0.89 

Weighted Average 0.89 0.89 0.88 

The accuracy obtained with naive bayes is 88.5% during training. The results obtained with naive 

bayes classifier are as follows for Validation set. 
Table 3.2 Classification Report – Naive Bayes – Validation 

 Precision Recall F1-score 

0 0.80 0.99 0.88 

1 0.89 0.31 0.46 

Weighted Average 0.82 0.81 0.77 

The accuracy obtained with naive bayes is 81% during validation.  The results obtained with 

recurrent neural network model are as follows for Training and Testing Phase. 
Table 3.3 Classification Report – RNN – Training and Testing 

 Precision Recall F1-score 

0 0.86 0.87 0.87 

1 0.86 0.86 0.86 

Weighted Average 0.86 0.86 0.86 

The accuracy obtained with recurrent neural network is 86% during training and testing. The results 

obtained with recurrent neural network model are as follows for validation. 
Table 3.4 Classification Report – RNN – Validation 

 Precision Recall F1-score 

0 0.54 0.92 0.68 
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1 0.56 0.11 0.18 

Weighted Average 0.55 0.54 0.44 

The accuracy obtained with RNN is 54% during validation.  The results obtained with the Decision 

Tree model are as follows during training and testing. 
Table 3.5 Classification Report – Decision Tree – Training and Testing 
 Precision Recall F1-score 

0 0.62 0.78 0.69 

1 0.83 0.70 0.76 

Weighted Average 0.75 0.73 0.73 

The accuracy obtained is 72.75% during training and testing. The results obtained with the Decision 

Tree model are as follows during Validation. 
Table 3.6 Classification Report – Decision Tree – Validation 

 Precision Recall F1-score 

0 0.75 0.96 0.84 

1 0.67 0.21 0.32 

Weighted Average 0.72 0.74 0.69 

The accuracy obtained with Decision Tree is 71% during validation. The following figure represents 

the comparison of the accuracy obtained with the three models during training and testing phase. 

 
 

Figure 3.1 Comparison of accuracy of three models-Training and testing 

The following figure represents the comparison of the accuracy obtained with the three models 

during validation phase. 

 
 

Figure 3.2 Comparison of accuracy of three models-Validations 

IV. CONCLUSION AND FUTURE WORK 

 

Three classifiers are designed for sentiment classification, two machine learning model and a deep 

learning model. The machine learning models implemented are multinomial naive bayes and 

decision tree. The deep learning model implemented is recurrent neural network with LSTM layer.  
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The dataset used in the work is a balanced model with 2000 positive reviews and 2000 negative 

reviews. Natural Language processing is used for pre-processing before the actual models are 

implemented. It has been observed that Naive Bayes model performs better than the other models. 

The future work would include designing a model that could produce better result in identifying the 

multiple polarities in a product review. 
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